A selective view of climatological data and likelihood estimation
Tài liệu tham khảo
1970
Alegría, 2021, The F-family of covariance functions: A Matérn analogue for modeling random fields on spheres, Spatial Stat., 43, 10.1016/j.spasta.2021.100512
Allen, 1999, Checking for model consistency in optimal fingerprinting, Clim. Dynam., 15, 419, 10.1007/s003820050291
Appel, 2020, Spatiotemporal multi-resolution approximations for analyzing global environmental data, Spatial Stat., 38, 10.1016/j.spasta.2020.100465
Bachoc, 2020, Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes, Electron. J. Stat., 14, 1962, 10.1214/20-EJS1712
Baddeley, 2017, Local composite likelihood for spatial point processes, Spatial Stat., 22, 261, 10.1016/j.spasta.2017.03.001
Bai, 2014, Efficient pairwise composite likelihood estimation for spatial-clustered data, Biometrics, 7, 661, 10.1111/biom.12199
Banerjee, 2020, Modeling massive spatial datasets using a conjugate Bayesian linear modeling framework, Spatial Stat., 37, 10.1016/j.spasta.2020.100417
Barbian, 2017, Spatial subsemble estimator for large geostatistical data, Spatial Stat., 22, 68, 10.1016/j.spasta.2017.08.004
Bevilacqua, 2021, Non-gaussian geostatistical modeling using (skew) t processes, Scand. J. Stat., 48, 212, 10.1111/sjos.12447
Bevilacqua, 2020, On modelling positive continuous data with spatio-temporal dependence, Environmetrics, 31, 10.1002/env.2632
Bevilacqua, 2020, Families of covariance functions for bivariate random fields on spheres, Spatial Stat., 40, 10.1016/j.spasta.2020.100448
Bevilacqua, 2019, Estimation and prediction using generalized wendland covariance functions under fixed domain asymptotics, Ann. Statist., 47, 828, 10.1214/17-AOS1652
Bevilacqua, 2015, Comparing composite likelihood methods based on pairs for spatial Gaussian random fields, Stat. Comput., 25, 877, 10.1007/s11222-014-9460-6
Bevilacqua, 2012, Estimating space and space–time covariance functions for large data sets: a weighted composite likelihood approach, J. Amer. Statist. Assoc., 107, 268, 10.1080/01621459.2011.646928
Bevilacqua, 2018
Bivand, 2013
Boettiger, 2015, An introduction to Docker for reproducible research, Oper. Syst. Rev., 49, 71, 10.1145/2723872.2723882
Brunner, L., Hauser, M., Lorenz, R., Beyerle, U., 2020. The ETH Zurich CMIP6 Next Generation Archive: Technical Documentation. Technical report, http://dx.doi.org/10.5281/zenodo.3734128.
Cameletti, 2019, BayesIan modelling for spatially misaligned health and air pollution data through the inla-spde approach, Spatial Stat., 31, 10.1016/j.spasta.2019.04.001
Cappello, 2021, Time varying complex covariance functions for oceanographic data, Spatial Stat., 42, 10.1016/j.spasta.2020.100426
Castruccio, 2016, Assessing the spatio-temporal structure of annual and seasonal surface temperature for CMIP5 and reanalysis, Spatial Stat., 18, 179, 10.1016/j.spasta.2016.03.004
Cressie, 1993
Cressie, 1994, 4 - models for spatial processes, 93
Cressie, 1996, Asymptotics for REML estimation of spatial covariance parameters, J. Statist. Plann. Inference, 50, 327, 10.1016/0378-3758(95)00061-5
Damian, 2003, Variance modeling for nonstationary spatial processes with temporal replications, J. Geophys. Res.: Atmos., 108
Danabasoglu, 2020, The community earth system model version 2 (CESM2), J. Adv. Modelling Earth Syst., 12
Davis, 2011, Comments on pairwise likelihood in time series models, Statist. Sinica, 21, 255
Eidsvik, 2013, Estimation and prediction in spatial models with block composite likelihoods, J. Comput. Graph. Statist., 23, 295, 10.1080/10618600.2012.760460
Feng, 2014, Composite likelihood estimation for models of spatial ordinal data and spatial proportional data with zero/one values, Environmetrics, 25, 571, 10.1002/env.2306
Flury, 2021, Identification of dominant features in spatial data, Spatial Stat., 41, 10.1016/j.spasta.2020.100483
Fowler, 2007, Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547, 10.1002/joc.1556
Franco-Villoria, 2017, Bootstrap based uncertainty bands for prediction in functional kriging, Spatial Stat., 21, 130, 10.1016/j.spasta.2017.06.005
Fronterrè, 2018, Geostatistical inference in the presence of geomasking: A composite-likelihood approach, Spatial Stat., 28, 319, 10.1016/j.spasta.2018.06.004
Furrer, 2021
Furrer, 2006, Covariance tapering for interpolation of large spatial datasets, J. Comput. Graph. Statist., 15, 502, 10.1198/106186006X132178
Furrer, 2010, Statistical modeling of hot spells and heat waves, Clim. Res., 43, 191, 10.3354/cr00924
Furrer, 2007, Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis, Geophys. Res. Lett., 34
Furrer, 2009, Spatial model fitting for large datasets with applications to climate and microarray problems, Stat. Comput., 19, 113, 10.1007/s11222-008-9075-x
Furrer, 2010, Spam: A sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields, J. Stat. Softw., 36, 1, 10.18637/jss.v036.i10
Furrer, 2007, Multivariate Bayesian analysis of atmosphere-ocean general circulation models, Environ. Ecol. Stat., 14, 249, 10.1007/s10651-007-0018-z
Gerber, 2019, Optimparallel: An R package providing a parallel version of the L-BFGS-B optimization method, R J., 11, 352, 10.32614/RJ-2019-030
Guinness, 2016, Isotropic covariance functions on spheres: Some properties and modeling considerations, J. Multivariate Anal., 143, 143, 10.1016/j.jmva.2015.08.018
Güsewell, 2017, Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason, Global Change Biol., 23, 5189, 10.1111/gcb.13781
Güsewell, 2018, 267
Heagerty, 1998, A composite likelihood approach to binary spatial data, J. Amer. Statist. Assoc., 93, 1099, 10.1080/01621459.1998.10473771
Heaton, 2019, A case study competition among methods for analyzing large spatial data, J. Agric. Biol. Environ. Stat., 24, 398, 10.1007/s13253-018-00348-w
Hengl, 2015, Spatial and spatio-temporal modeling of meteorological and climatic variables using open source software, Spatial Stat., 14, 1, 10.1016/j.spasta.2015.06.005
Heyde, 1997
Hong, 2021, Efficiency assessment of approximated spatial predictions for large datasets, Spatial Stat., 43, 10.1016/j.spasta.2021.100517
Houghton, 2001
Hurrell, 2013, 1
Jeong, 2015, A class of Matérn-like covariance functions for smooth processes on a sphere, Spatial Stat., 11, 1, 10.1016/j.spasta.2014.11.001
Joe, 2009, On weighting of bivariate margins in pairwise likelihood, J. Multivariate Anal., 100, 670, 10.1016/j.jmva.2008.07.004
Jones, 2009, Sinh-arcsinh distributions, Biometrika, 96, 761, 10.1093/biomet/asp053
Kalnay, 1996, The NCEP/NCAR 40-year reanalysis project, Am. Meteorol. Soc. Bull., 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kaufman, 2008, Covariance tapering for likelihood-based estimation in large spatial data sets, J. Amer. Statist. Assoc., 103, 1545, 10.1198/016214508000000959
Kaufman, 2013, The role of the range parameter for estimation and prediction in geostatistics, Biometrika, 100, 473, 10.1093/biomet/ass079
Kleiber, 2015, Equivalent kriging, Spatial Stat., 12, 31, 10.1016/j.spasta.2015.01.004
Li, 2021, Geospatial constrained optimization to simulate and predict spatiotemporal trends of air pollutants, Spatial Stat., 45, 10.1016/j.spasta.2021.100533
Li, 2018, On approximating optimal weighted composite likelihood method for spatial models, Stat, 7, 10.1002/sta4.194
Lie, 2021, Inference in cylindrical models having latent markovian classes with an application to ocean current data, Spatial Stat., 41, 10.1016/j.spasta.2021.100497
Lindsay, 1988, Composite likelihood methods, Contemp. Math., 80, 221, 10.1090/conm/080/999014
Lindsay, 2011, Issues and strategies in the selection of composite likelihoods, Statist. Sinica, 21, 71
Mardia, 1984, Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 135, 10.1093/biomet/71.1.135
2021
2021
Matérn, 1986
Meehl, G.A., 2019. The Coupled Model Intercomparison Project (CMIP) and interface with IPCC. In: AGU Fall Meeting, WCRP40, San Francisco.
Meehl, 1997, Intercomparison makes for a better climate model, Eos, 78
Meehl, 2007, THE WCRP CMIP3 multimodel dataset: A new era in climate change research, Bull. Am. Meteorol. Soc., 88, 1383, 10.1175/BAMS-88-9-1383
NASA, 2021
Nash, 2014
Nychka, 2018, Modeling and emulation of nonstationary Gaussian fields, Spatial Stat., 28, 21, 10.1016/j.spasta.2018.08.006
Pace, 2019, Efficient composite likelihood for a scalar parameter of interest, Stat, 8, 10.1002/sta4.222
Paciorek, 2015, Parallelizing Gaussian process calculations in R, J. Stat. Softw., 63, 1, 10.18637/jss.v063.i10
Pascoe, 2020, Documenting numerical experiments in support of the Coupled Model Intercomparison Project phase 6 CMIP6, Geosci. Model Dev., 13, 2149, 10.5194/gmd-13-2149-2020
Pathakoti, 2021, Assessment of spatio-temporal climatological trends of ozone over the Indian region using machine learning, Spatial Stat., 43, 10.1016/j.spasta.2021.100513
Poggio, 2015, Downscaling and correction of regional climate models outputs with a hybrid geostatistical approach, Spatial Stat., 14, 4, 10.1016/j.spasta.2015.04.006
R. Core Team, 2021
Sain, 2011, A spatial analysis of multivariate output from regional climate models, Ann. Appl. Stat., 5, 150, 10.1214/10-AOAS369
Salvaña, 2020, Nonstationary cross-covariance functions for multivariate spatio-temporal random fields, Spatial Stat., 37, 10.1016/j.spasta.2020.100411
Schmidt, 2020, Flexible spatial covariance functions, Spatial Stat., 37, 10.1016/j.spasta.2020.100416
2007
Stein, 1999
Stein, 2013, Statistical properties of covariance tapers, J. Comput. Graph. Statist., 22, 866, 10.1080/10618600.2012.719844
Stein, 2004, Approximating likelihoods for large spatial data sets, J. Royal Stat. Soc. B, 66, 275, 10.1046/j.1369-7412.2003.05512.x
Taylor, K.E., Juckes, M., Balaji, V., Cinquini, L., Denvil, S., Durack, P.J., Elkington, M., Guilyardi, E., Kharin, S., Lautenschlager, M., Lawrence, B., Nadeau, D., Stockhause, M., 2018. CMIP6 Global Attributes, DRS, Filenames, Directory Structure, and CV’s. Technical report, 10 September 2018 (v6.2.7),.
Trenberth, 1997, The definition of El Niño, Bull. Am. Meteorol. Soc., 78, 2771, 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
Varin, 2011, An overview of composite likelihood methods, Statist. Sinica, 21, 5
Wackernagel, 2006
Waller, 2010, Disease mapping
Wendland, 1995, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389, 10.1007/BF02123482
Wendland, 1998, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory, 93, 258, 10.1006/jath.1997.3137
Wilby, 2004
Xu, 2016, Tukey max-stable processes for spatial extremes, Spatial Stat., 18, 431, 10.1016/j.spasta.2016.09.002
Xu, 2017, Tukey g-and-h random fields, J. Amer. Statist. Assoc., 112, 1236, 10.1080/01621459.2016.1205501
