Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp chiết xuất và làm sạch mẫu trầm tích cho phân tích đa mục tiêu rộng bằng sắc ký lỏng - phổ khối lượng độ phân giải cao
Tóm tắt
Các nghiên cứu trước đây về ô nhiễm trầm tích hữu cơ chủ yếu tập trung vào một số lượng hạn chế các vi chất ô nhiễm siêu hydrophobic có thể xác định bằng sắc ký khí sử dụng dung môi chiết không phân cực, không có tính chất điện cực. Sự phát triển của sắc ký lỏng – phổ khối lượng độ phân giải cao (LC–HRMS) cho phép mở rộng quang phổ phân tích tới một loạt các hợp chất phân cực và ion khác có mặt trong trầm tích và cho phép các phân tích mục tiêu, nghi ngờ và không mục tiêu được tiến hành với độ nhạy và chọn lọc cao. Trong nghiên cứu này, chúng tôi đề xuất một phương pháp chiết xuất đa mục tiêu toàn diện và chuẩn bị mẫu để xác định ô nhiễm trầm tích, bao gồm một loạt các đặc tính lý hóa thích hợp cho phân tích sàng lọc LC–HRMS. Chúng tôi đã tối ưu hóa chiết xuất lỏng dưới áp suất, làm sạch và pha loãng mẫu cho danh sách mục tiêu gồm 310 hợp chất. Cuối cùng, phương pháp này đã được thử nghiệm trên các mẫu trầm tích từ một con sông nhỏ và các phụ lưu của nó. Kết quả cho thấy sự kết hợp của 100 °C cho dung môi acetat etyl - acetone (50:50, chiết trung tính) sau đó là 80 °C cho acetone - axit formic (100:1, chiết axit) và methanol - 10 mM natri tetraborat trong nước (90:10, chiết kiềm) đã mang lại hiệu suất chiết tốt nhất cho 287 trong số 310 hợp chất. Ở mức độ nhiễm bẩn 1 μg mL-1, chúng tôi đã đạt được hiệu suất làm sạch đáng hài lòng cho chiết trung tính—(93 ± 23)%—và cho các chiết axit/kiềm kết hợp—(42 ± 16)%—sau khi trao đổi dung môi. Trong số 69 hợp chất được phát hiện trong các mẫu môi trường, chúng tôi đã thành công trong việc định lượng một số dược phẩm và thuốc trừ sâu phân cực.
Từ khóa
#ô nhiễm trầm tích #chiết xuất #sắc ký lỏng #phổ khối lượng độ phân giải cao #khảo sát đa mục tiêuTài liệu tham khảo
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, et al. Effect-directed analysis supporting monitoring of aquatic environments — an in-depth overview. Sci The Total Environ. 2016;544:1073–118. https://doi.org/10.1016/j.scitotenv.2015.11.102.
Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–7. https://doi.org/10.1126/science.1127291.
Soclo HH, Garrigues P, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case Sstudies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull. 2000;40(5):387–96. https://doi.org/10.1016/S0025-326X(99)00200-3.
Qiao M, Wang C, Huang S, Wang D, Wang Z. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int. 2006;32(1):28–33. https://doi.org/10.1016/j.envint.2005.04.005.
Ma M, Feng Z, Guan C, Ma Y, Xu H, Li H. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea. Mar Pollut Bull. 2001;42(2):132–6. https://doi.org/10.1016/S0025-326X(00)00118-1.
Vazquez-Roig P, Segarra R, Blasco C, Andreu V, Picó Y. Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(16):2471–83. https://doi.org/10.1016/j.chroma.2009.11.033.
Vazquez-Roig P, Andreu V, Blasco C, Picó Y. Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego–Oliva Marshlands (Valencia, eastern Spain). Sci Total Environ. 2012;440:24–32. https://doi.org/10.1016/j.scitotenv.2012.08.036.
Löffler D, Ternes TA. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2003;1021(1–2):133–44. https://doi.org/10.1016/j.chroma.2003.08.089.
Yamamoto H, Nakamura Y, Moriguchi S, Nakamura Y, Honda Y, Tamura I, et al. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res. 2009;43(2):351–62.
Camusso M, Galassi S, Vignati D. Assessment of river Po sediment quality by micropollutant analysis. Water Res. 2002;36(10):2491–504. https://doi.org/10.1016/S0043-1354(01)00485-7.
Guzzella L, Roscioli C, Viganò L, Saha M, Sarkar SK, Bhattacharya A. Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int. 2005;31(4):523–34. https://doi.org/10.1016/j.envint.2004.10.014.
Camino-Sánchez FJ, Zafra-Gómez A, Pérez-Trujillo JP, Conde-González JE, Marques JC, Vílchez JL. Validation of a GC–MS/MS method for simultaneous determination of 86 persistent organic pollutants in marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction. Chemosphere. 2011;84(7):869–81. https://doi.org/10.1016/j.chemosphere.2011.06.019.
Björklund E, Nilsson T, Bøwadt S. Pressurised liquid extraction of persistent organic pollutants in environmental analysis. Trends Anal Chem. 2000;19(7):434–45. https://doi.org/10.1016/S0165-9936(00)00002-9.
Lopez-Avila V, Young R, Beckert WF. Microwave-assisted extraction of organic compounds from standard reference soils and sediments. Anal Chem. 1994;66(7):1097–106.
Martinez E, Gros M, Lacorte S, Barceló D. Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. J Chromatogr A. 2004;1047(2):181–8. https://doi.org/10.1016/j.chroma.2004.07.003.
Ramos L, Vreuls J, Brinkman UT. Miniaturised pressurised liquid extraction of polycyclic aromatic hydrocarbons from soil and sediment with subsequent large-volume injection–gas chromatography. J Chromatogr A. 2000;891(2):275–86.
Chee KK, Wong MK, Lee HK. Optimization of microwave-assisted solvent extraction of polycyclic aromatic hydrocarbons in marine sediments using a microwave extraction system with high-performance liquid chromatography-fluorescence detection and gas chromatography-mass spectrometry. J Chromatogr A. 1996;723(2):259–71.
Liu D, Wong P, Dutka B. Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method. Water Res. 1973;7(5):741–6.
Schwarzbauer J, Ricking M, Franke S, Francke W. Halogenated organic contaminants in sediments of the Havel and Spree rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe River and its tributaries. Environ Sci Technol. 2001;35(20):4015–25. https://doi.org/10.1021/es010084r.
Franke S, Schwarzbauer J, Francke W. Arylesters of alkylsulfonic acids in sediments. Part III of organic compounds as contaminants of the Elbe River and its tributaries. Fresenius J Anal Chem. 1998;360(5):580–8. https://doi.org/10.1007/s002160050762.
Ricking M, Schwarzbauer J, Franke S. Molecular markers of anthropogenic activity in sediments of the Havel and Spree rivers (Germany). Water Res. 2003;37(11):2607–17. https://doi.org/10.1016/S0043-1354(03)00078-2.
Pérez-Carrera E, Hansen M, León VM, Björklund E, Krogh KA, Halling-Sørensen B, et al. Multiresidue method for the determination of 32 human and veterinary pharmaceuticals in soil and sediment by pressurized-liquid extraction and LC-MS/MS. Anal Bioanal Chem. 2010;398(3):1173–84. https://doi.org/10.1007/s00216-010-3862-x.
Jelić A, Petrović M, Barceló D. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta. 2009;80(1):363–71.
Chiaia-Hernandez AC, Krauss M, Hollender J. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol. 2013;47(2):976–86. https://doi.org/10.1021/es303888v.
Minten J, Adolfsson-Erici M, Alsberg T. Extraction and analysis of pharmaceuticals in polluted sediment using liquid chromatography mass spectrometry. International J Environ Anal Chem. 2011;91(6):553–66. https://doi.org/10.1080/03067311003657983.
Hajj-Mohamad M, Aboulfadl K, Darwano H, Madoux-Humery A-S, Guérineau H, Sauvé S, et al. Wastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments. Environ Sci Process Impacts. 2014;16(10):2442–50.
Varga M, Dobor J, Helenkár A, Jurecska L, Yao J, Záray G. Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography–mass spectrometry. Microchem J. 2010;95(2):353–8. https://doi.org/10.1016/j.microc.2010.02.010.
US EPA. Method 1694: pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. 2007.
Krauss M, Singer H, Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51. https://doi.org/10.1007/s00216-010-3608-9.
Hug C, Ulrich N, Schulze T, Brack W, Krauss M. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut. 2014;184:25–32. https://doi.org/10.1016/j.envpol.2013.07.048.
Greulich K, Alder L. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Anal Bioanal Chem. 2008;391(1):183–97. https://doi.org/10.1007/s00216-008-1935-x.
Nogueira JMF, Sandra T, Sandra P. Multiresidue screening of neutral pesticides in water samples by high performance liquid chromatography–electrospray mass spectrometry. Anal Chim Acta. 2004;505(2):209–15. https://doi.org/10.1016/j.aca.2003.10.065.
Hernández F, Pozo ÓJ, Sancho JV, López FJ, Marín JM, Ibáñez M. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC–MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers. Trends Anal Chem. 2005;24(7):596–612. https://doi.org/10.1016/j.trac.2005.04.007.
Schymanski EL, Singer HP, Longrée P, Loos M, Ruff M, Stravs MA, et al. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol. 2014;48(3):1811–8.
Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal Bioanal Chem. 2014;406(28):7323–35.
Radjenović J, Jelić A, Petrović M, Barceló D. Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem. 2009;393(6):1685–95. https://doi.org/10.1007/s00216-009-2604-4.
US EPA. Definition and procedure for the determination of the method detection limit. 40 CFR Part 136, Appendix B to Part 136 Revision 1.11. 2011.
Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C. Accelerated solvent extraction: a technique for sample preparation. Anal Chem. 1996;68(6):1033–9. https://doi.org/10.1021/ac9508199.
Müller T, Rosendahl I, Focks A, Siemens J, Klasmeier J, Matthies M. Short-term extractability of sulfadiazine after application to soils. Environ Pollut. 2013;172:180–5.
Lee LS, Nyman AK, Li H, Nyman MC, Jafvert C. Initial sorption of aromatic amines to surface soils. Environm Toxicol Chem. 1997;16(8):1575–82.
Weber EJ, Colón D, Baughman GL. Sediment-associated reactions of aromatic amines. 1. Elucidation of sorption mechanisms. Environ Sci Technol. 2001;35(12):2470–5.
Berlioz-Barbier A, Vauchez A, Wiest L, Baudot R, Vulliet E, Cren-Olivé C. Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Anal Bioanal Chem. 2014;406(4):1259–66. https://doi.org/10.1007/s00216-013-7450-8.
Langford KH, Reid M, Thomas KV. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge. J Environ Monit. 2011;13(8):2284–91.
Reid BJ, Jones KC, Semple KT. Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut. 2000;108(1):103–12. https://doi.org/10.1016/S0269-7491(99)00206-7.
Inostroza PA, Massei R, Wild R, Krauss M, Brack W (2017) Chemical activity and distribution of emerging pollutants: Insights from a multi-compartment analysis of a freshwater system. Environ. Pollut. 2017:231(Pt 1):339-347. https;://doi.org/10.1016/j.envpol.2017.08.015
Wu Q, Riise G, Pflugmacher S, Greulich K, Steinberg CEW. Combined effects of the fungicide propiconazole and agricultural runoff sediments on the aquatic bryophyte Vesicularia dubyana. Environ Toxicol Chem. 2005;24(9):2285–90. https://doi.org/10.1897/04-364R.1.
Dong S, Huang G, Lu J, Huang T. Determination of fungicides in sediments using a dispersive liquid–liquid microextraction procedure based on solidification of floating organic drop. J Sep Sci. 2014;37(11):1337–42. https://doi.org/10.1002/jssc.201400010.
Kvíčalová M, Doubravová P, Jobánek R, Jokešová M, Očenášková V, Süssenbeková H, et al. Application of different extraction methods for the determination of selected pesticide residues in sediments. Bull Environ Contam Toxicol. 2012;89(1):21–6. https://doi.org/10.1007/s00128-012-0622-y.