Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một bài đánh giá phạm vi về việc sử dụng xử lý ngôn ngữ tự nhiên trong nghiên cứu về phân cực chính trị: xu hướng và triển vọng nghiên cứu
Tóm tắt
Là một phần của phong trào “văn bản như dữ liệu”, Xử lý Ngôn ngữ Tự nhiên (NLP) cung cấp một phương pháp tính toán để kiểm tra phân cực chính trị. Chúng tôi đã tiến hành một đánh giá phương pháp học thuật về các nghiên cứu được công bố từ năm 2010 (n = 154) để làm sáng tỏ cách mà nghiên cứu NLP đã khái niệm hóa và đo lường phân cực chính trị, và để xác định mức độ hội tụ của hai khuynh hướng nghiên cứu khác nhau trong lĩnh vực nghiên cứu này. Chúng tôi đã phát hiện ra sự thiên lệch đối với bối cảnh Mỹ (59%), dữ liệu Twitter (43%) và phương pháp học máy (33%). Nghiên cứu bao phủ nhiều lớp khác nhau của lĩnh vực công cộng chính trị (các chính trị gia, chuyên gia, truyền thông, hoặc công chúng nói chung), tuy nhiên, rất ít nghiên cứu tham gia vào hơn một lớp. Kết quả cho thấy chỉ một vài nghiên cứu sử dụng kiến thức chuyên ngành và một tỷ lệ cao các nghiên cứu không liên ngành. Những nghiên cứu đã cố gắng diễn giải các kết quả cho thấy rằng các đặc điểm của văn bản chính trị phụ thuộc không chỉ vào vị trí chính trị của tác giả mà còn vào các yếu tố khác thường bị bỏ qua. Bỏ qua những yếu tố này có thể dẫn đến các chỉ số hiệu suất quá lạc quan. Hơn nữa, các kết quả giả có thể được thu được khi các mối quan hệ nguyên nhân được suy ra từ dữ liệu văn bản. Bài báo của chúng tôi đưa ra các lập luận cho việc tích hợp các mô hình giải thích và dự đoán, và cho một cách tiếp cận liên ngành hơn trong nghiên cứu về phân cực.
Từ khóa
#Xử lý ngôn ngữ tự nhiên #phân cực chính trị #nghiên cứu liên ngành #mô hình hóa giải thích #mô hình hóa dự đoánTài liệu tham khảo
DiMaggio, P., Evans, J., & Bryson, B. (1996). Have American’s social attitudes become more polarized? American Journal of Sociology, 102(3), 690–755. https://doi.org/10.1086/230995
Lelkes, Y. (2016). Mass Polarization: Manifestations and Measurements. Public Opinion Quartely, 80(S1), 392–410. https://doi.org/10.1093/poq/nfw005
Yarchi, M., Baden, C., & Kligler-Vilenchik, N. (2021). Political polarization on the digital sphere: A cross-platform, over-time analysis of interactional, positional, and affective polarization on social media. Political Communication, 38(1–2), 98–139. https://doi.org/10.1080/10584609.2020.1785067
Carius-Munz, L. M. (2020). Partisanship: Conceptualizations and consequences. In H. Oscarsson & S. Holmberg (Eds.), Research Handbook on Political Partisanship (pp. 47–59). Edward Elgar Publishing.
Demszky, D., Garg, N., Voigt, R., Zou, J., Gentzkow, M., Shapiro, J., Jurafsky, D (2019) Analyzing polarization in social media: Method and application to tweets on 21 mass shootings. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, MN, USA.
Fiorina, M. P., & Abrams, S. J. (2008). Political polarization in the American public. Annual Review of Political Science (Palo Alto), 11, 563–588. https://doi.org/10.1146/annurev.polisci.11.053106.153836
Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., & Yarkoni, T. (2021). Integrating explanation and prediction in computational social science. Nature, 595(7866), 181–188.
Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–215.
Tian, X., Geng, Y., Zhong, S., Wilson, J., Gao, C., Chen, W., Yu, Z., & Hao, H. (2018). A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transportation Research Part D, 59, 1–10. https://doi.org/10.1016/j.trd.2017.12.009
Akintunde, T. Y., Musa, T. H., Musa, H. H., Musa, I. H., Chen, S., Ibrahim, E., Tassang, A. E., & Helmy, M. S. E. D. M. (2021). Bibliometric analysis of global scientific literature on effects of COVID-19 pandemic on mental health. Asian Journal of Psychiatry. https://doi.org/10.1016/j.ajp.2021.102753
Wang, J., Deng, H., Liu, B., Hu, A., Liang, J., Fan, L., Zheng, X., Wang, T., & Lei, J. (2020). Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on pubMed. Journal of Medical Internet Research, 22(1), e168161. https://doi.org/10.2196/16816
Jensen, J., Kaplan, E., Naidu, S., & Wilse-Samson, L. (2012). Political polarization and the dynamics of political language: evidence from 130 years of partisan speech. Brookings Papers on Economic Activity, 2012, 1–81. https://doi.org/10.1353/eca.2012.0017
Iliev, I. R., Huang, X., & Gel, Y. R. (2019). Political rhetoric through the lens of non-parametric statistics: are our legislators that different? Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 583–604. https://doi.org/10.1111/rssa.12421
KhudaBukhsh, A. R., Sarkar, R., Kamlet, M. S., & Mitchell, T. M. (2020). We don’t speak the same language: interpreting polarization through machine translation. Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.48550/ARXIV.2010.02339
Wu, P.Y., Mebane, W.R., Woods, L., Klaver, J. & Duek, P. (2019). Partisan Associations of Twitter Users Based on Their Self-descriptions and Word Embeddings. In: Paper prepared for presentation at the 2019 Annual Meeting of the American Political Science Association, Washington, DC
Gross, M., & Jankowski, M. (2020). Dimensions of political conflict and party positions in multi-level democracies: evidence from the local manifesto project. West European Politics, 43(1), 74–101. https://doi.org/10.1080/01402382.2019.1602816
Wang, R. T., & Tucker, P. D. (2021). How partisanship influences what congress says online and how they say it. American Political Research, 49(1), 76–90. https://doi.org/10.1177/1532673x20939498
Jelveh, Z., Kogut, B., Naidu, S. (2014). Detecting Latent Ideology in Expert Text: Evidence From Academic Papers in Economics. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar. pp. 1804–1809.
Diaf, S., Döpke, J., Fritsche, U., & Rockenbach, I. (2022). Sharks and minnows in a shoal of words: Measuring latent ideological positions based on text mining techniques. European Journal of Political Economy. https://doi.org/10.1016/j.ejpoleco.2022.102179
Hausladen, C. I., Schubert, M. H., & Ash, E. (2020). Text classification of ideological direction in judicial opinions. International Review of Law and Economics, 62, 105903. https://doi.org/10.1016/j.irle.2020.105903
Serrano-Contreras, I.-J., García-Marín, J., & Luengo, Ó. G. (2020). Measuring online political dialogue: does polarization trigger more deliberation? Media and Communication., 8(4), 63–72.
Karamshuk, D., Lokot, T., Pryymak, O., & Sastry, N. (2016). Identifying partisan slant in news articles and twitter during political crises. Lecture Notes in Computer ScienceCham: Springer International Publishing.
Hofmann, K., Marakasova, A., Baumann, A., Neidhardt, J., Wissik, T. (2020). Comparing Lexical Usage in Political Discourse across Diachronic Corpora. In: Proceedings of ParlaCLARIN II Workshop of the Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020 European Language Resources Association (ELRA). pp: 58–65.
Acree, B. (2016). Deep learning and ideological rhetoric PhD dissertation, College of Arts and Sciences Department of Political Science The University of North Carolina at Chapel Hill University Libraries. https://doi.org/10.17615/mm0p-jk38
Yan, H., Lavoi, A., Das, S. (2017). The Perils of Classifying Political Orientation From Text. LINKDEM@ IJCAI. Retrieved June 29, 2021 from http://ceur-ws.org/Vol-1897/paper3.pdf
Yan, H., Das, S., Lavoie, A., Li, S. & Sinclair, B. 2019. The congressional classification challenge: domain specificity and partisan intensity. In: Proceedings of the 2019 ACM Conference on Economics and Computation, 71–89. https://doi.org/10.1145/3328526.3329582
Cohen, R., Ruths, D. (2013). Classifying Political Orientation on Twitter: It’s Not Easy!, in: Proceedings of the the 7th International AAAI Conference on Weblogs and Social Media (ICWSM-13). Cambridge, Massachusetts USA. pp. 91–99. Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/14434
Diermeier, D., Godbout, J.-F., Yu, B., & Kaufmann, S. (2012). Language and ideology in Congress. British Journal of Political Science, 42(1), 31–55. https://doi.org/10.1017/s0007123411000160
Morini, V., Pollacci, L., Rossetti, G. (2020). Capturing Political Polarization of Reddit Submissions in the Trump Era. In: Paper presented at SEBD 2020, June 21–24, 2020, Villasimius, Italy.
Grover, T., Bayraktaroglu, E., Mark, G., & Rho, E. H. R. (2019). Moral and affective differences in US. immigration policy debate on twitter. Computer Supportive Cooperative Work, 28, 317–355. https://doi.org/10.1007/s10606-019-09357-w
Cotelo, J. M., Cruz, F. L., Enríquez, F., & Troyano, J. A. (2016). Tweet categorization by combining content and structural knowledge. Information Fusion, 31, 54–64. https://doi.org/10.1016/j.inffus.2016.01.002
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B. (2018). A stylometric inquiry into hyperpartisan and fake news. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp. 231–240.
Hirst, G., Riabinin Y., Graham, J. (2010). Party status as a confound in the automatic classification of political speech by ideology, in: Bolasco, S., Chiari, I., Giuliano, L. (Eds.) Proceedings of 10th International Conference, Journées d’Analyse statistique des Données Textuelles, 9–11 June 2010 - Sapienza University of Rome. Retrieved online from https://www.ledonline.it/ledonline/JADT-2010/allegati/JADT-2010-0731-0742_137-Hirst.pdf
Hirst, G., Riabinin, Y., Graham, J., Boizot-Roche, M., & Morris, C. (2014). Text to ideology or text to party status? In B. Kaal, I. Maks, & A. van Elfrinkhof (Eds.), From text to political positions: Text analysis across disciplines. Amsterdam: John Benjamins Publishing Company.
Medzihorsky, J., Littvay, L., & Jenne, E. K. (2014). Has the tea party era radicalized the republican party? Evidence from text analysis of the 2008 and 2012 republican primary debates. PS Political Science & Politics, 47(4), 806–812. https://doi.org/10.1017/s1049096514001085
Goet, N.D., (2017). Measuring polarization with text analysis: Evidence from the UK House of Commons, 1811–2015. In: Paper prepared for the Polarization, Institutional Design and the Future of Representative Democracy workshop, Berlin, Harnack Haus.
McCarty, N. M., Poole, K. T., & Rosenthal, H. (2006). Polarized America: the dance of ideology and unequal riches. MIT Press.
Nguyen, V.A., Boyd-Graber, J., Resnik & P. Miler, K. 2015. Tea party in the house: A hierarchical ideal point topic model and its application to republican legislators in the 112th congress. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1438–14
Gerrish, S.M., Blei, D.M. (2012). How They Vote: Issue-Adjusted Models of Legislative Behavior. In: Advances in Neural Information Processing Systems 25 (NIPS 2012).
Green, J., Edgerton, J., Naftel, D., Shoub, K., Cranmer, S.J. (2020). Elusive consensus: Polarization in elite communication on the COVID-19 pandemic. Science Advances 6 (28). https://doi.org/10.1126/sciadv.abc2717
Bayram, U., Pestian, J., Santel, D., Minai, A.A. (2019). What’s in a word? Detecting partisan affiliation from word use in congressional speeches. In: Paper presented at the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19th July 2019.
Gentzkow, M., Shapiro, J. M., & Taddy, M. (2019). Measuring group differences in high-dimensional choices: method and application to congressional speech. Econometrica, 87(4), 1307–1340. https://doi.org/10.3982/ecta16566
Taddy, M. (2013). Multinomial inverse regression for text analysis. Journal of American Statistical Association, 108(503), 755–770. https://doi.org/10.1080/01621459.2012.734168
Taddy, M. (2015). Distributed multinomial regression. Annals of Applied Statistics, 9(3), 1394–1414. https://doi.org/10.1214/15-aoas831
Kelly, B., Manela, A., & Moreira, A. (2021). Text selection. Journal of Business and Economic Statistics, 39(4), 859–879. https://doi.org/10.1080/07350015.2021.1947843
Samantray, A., & Pin, P. (2019). Credibility of climate change denial in social media. Palgrave Commun. https://doi.org/10.1057/s41599-019-0344-4
Darwish, K. (2019). Quantifying Polarization on Twitter: The Kavanaugh Nomination. SocInfo 2019 Social Informatics Lecture Notes in Computer Science. Cham: Springer.
Garimella, K., Morales, G. D. F., Gionis, A., & Mathioudakis, M. (2018). Quantifying controversy on social media. ACM Transactions on Social Computing, 1(1), 3.
Budhiraja, A., Pal, J. (2020). Twitter and political culture: Short text embeddings as a window into political fragmentation. In: Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, 335–336. https://doi.org/10.1145/3378393.3402276.
Villa-Cox, R., KhudaBukhsh, A.R. & Carley, K.M. 2021. Exploring Polarization of Users Behavior on Twitter During the 2019 South American Protests. arXiv preprint on arXiv:2104.05611
Gross, J., Acree, B., Sim, Y., Smith, N.A. (2013). Testing the Etch-a-Sketch Hypothesis: A Computational Analysis of Mitt Romney’s Ideological Makeover During the 2012 Primary vs. General Elections. APSA 2013 Annual Meeting Paper, American Political Science Association 2013 Annual Meeting, Available at SSRN: https://ssrn.com/abstract=2299991
Acree, B. D. L., Gross, J. H., Smith, N. A., Sim, Y., & Boydstun, A. E. (2020). Etch-a-sketching: Evaluating the post-primary rhetorical moderation hypothesis. American Politics Research, 8(1), 99–131. https://doi.org/10.1177/1532673x18800017
Tsur, O., Calacci & D., Lazer, D. 2015. A frame of mind: Using statistical models for detection of framing and agenda setting campaigns. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China, pp. 1629–1638.
Farrell, J. (2016). Corporate funding and ideological polarization about climate change. Proceedings of the National Academy of Sciences of the United States of America, 113(1), 92–97. https://doi.org/10.1073/pnas.1509433112
Stefanov, P., Darwish, K., Atanasov, A., Nakov, P. (2019). Predicting the topical stance of media and popular Twitter users. arXiv preprint on arXiv: 1907. 01260.https://doi.org/10.48550/ARXIV.1907.01260
Darwish, K., Stefanov, P., Aupetit, M., & Nakov, P. (2020). Unsupervised User Stance Detection on Twitter. In: Proceedings of the 14th International AAAI Conference on Web and Social Media. pp. 141–152. Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/7286
Giglietto, F., Iannelli, L., Rossi, L., Valeriani, A., Righetti, N., Carabini, F., Marino, G., Usai, S., & Zurovac, E. (2018). Mapping Italian news media political coverage in the lead-up of 2018 general election. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3179930
Fang, A., Ounis, I., Habel, P., Macdonald, C., Limsopatham, N. (2015). Topic-centric classification of twitter user’s political orientation, in: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, New York, USA. pp. 791–794. .https://doi.org/10.1145/2766462.2767833
Ademmer, E., Stöhr, T. (2019). The making of a new cleavage? Evidence from social media debates about migration. Kiel Working Papers No. 2140, Kiel University
Zubiaga, A., Wang, B., Liakata, M., & Procter, R. (2018). Political Homophily in Independence Movements: Analysing and Classifying Social Media Users by National Identity. arXiv.1702.08388
Kulkarni, V., Ye, J., Skiena, S., & Wang, W. Y. (2018). Multi-view models for political ideology detection of news articles. arXiv Preprint on arXiv 1809 03485. https://doi.org/10.48550/ARXIV.1809.03485
Rao, A., Morstatter, F., Hu, M., Chen, E., Burghardt, K., Ferrara, E., & Lerman, K. (2020). Political partisanship and anti-science attitudes in online discussions about covid-19. arXiv Preprint on arXiv 2011 08498. https://doi.org/10.48550/ARXIV.2011.08498
Kobayashi, T., Ogawa, Y., Suzuki, T., & Yamamoto, H. (2019). News audience fragmentation in the Japanese Twittersphere. Asian Journal of Communication, 29(3), 274–290. https://doi.org/10.1080/01292986.2018.1458326
Conover, M.D., Goncalves, B., Ratkiewicz, J., Flammini, A. & Menczer, F. (2011). Predicting the political alignment of twitter users. In: Proceedings of the 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing. 9–11 October, 2011, Boston, MA, USA.
Wang, Y., Feng, Y., Hong, Z., Berger, R., Luo, J. (2017). How polarized have we become? A multimodal classification of Trump followers and Clinton followers. arXiv Preprint on arXiv:1711.00617. https://doi.org/10.48550/ARXIV.1711.00617
Belcastro, L., Cantini, R., Marozzo, F., Talia, D., & Trunfio, P. (2020). Learning political polarization on social media using neural networks. IEEE Access, 8, 47177–47187. https://doi.org/10.1109/access.2020.2978950
Baly, R., Martino, G. D. S., Glass, J., & Nakov, P. (2020). We can detect your bias: Predicting the political ideology of news articles. arXiv Preprint on arXiv:2010.05338. https://doi.org/10.4550/ARXIV.2010.05338
Shen, Q., Rosé, C.P. (2019). The Discourse of Online Content Moderation: Investigating Polarized User Responses to Changes in Reddit’s Quarantine Policy. In: Proceedings of the Third Workshop on Abusive Language Online, pp. 58–69. Association for Computational Linguistics, Florence, Italy, August 1, 2019.
Sinno, B., Oviedo, B., Atwell, K., Alikhani, M., & Li, J. J. (2021). Political ideology and polarization of policy positions: A multi-dimensional approach. arXiv Preprint on arXiv:2106.14387. https://doi.org/10.48550/ARXIV.2106.14387
Thonet, T., Cabanac, G., Boughanem, M., Pinel-Sauvagnat, K. (2017). Users are known by the company they keep: Topic models for viewpoint discovery in social networks. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, New York, NY, USA. pp. 87–96.https://doi.org/10.1145/3132847.3132897
Trabelsi, A. & Zaiane, O. (2018). Unsupervised Model for Topic Viewpoint Discovery in Online Debates Leveraging Author Interactions. In: Proceedings of the International AAAI Conference on Web and Social Media, 12. Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/15021
Koylu, C., Larson, R., Dietrich, B. J., & Lee, K.-P. (2019). CarSenToGram: Geovisual text analytics for exploring spatiotemporal variation in public discourse on Twitter. Cartography and Geographic Information Science, 46(1), 57–71. https://doi.org/10.1080/15230406.2018.1570343
Coutto, T. (2020). Half-full or half-empty? Framing of UK–EU relations during the Brexit referendum campaign. Journal of European Integration, 42(5), 695–713. https://doi.org/10.1080/07036337.2020.1792465
Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019). Polarization and acculturation in US election 2016 outcomes–Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438–460. https://doi.org/10.1016/j.techfore.2018.09.009
Brigadir, I., Greene, D., Cunningham, P. (2015). Analyzing discourse communities with distributional semantic models. In: Proceedings of the ACM Web Science Conference. ACM, New York, NY, USA.
Bonikowski, B., Feinstein, Y., Bock, S. (2019). The Polarization of Nationalist Cleavages and the 2016 U.S. Presidential Election. In: Paper presented at The UCR Political Economy Seminar, April 12, 2019. https://ucrpoliticaleconomy.ucr.edu/wp-content/uploads/2019/04/Bonikowski-Feinstein-and-Bock-Polarization-of-Nationalist-Cleavages-UC-Riverside.pdf.
Rashed, A., Kutlu, M., Darwish, K., Elsayed, T., & Bayrak, C. (2020). Embeddings-based clustering for target specific stances: the case of a polarized Turkey. arXiv preprint on arXiv:2005.09649. https://doi.org/10.4550/ARXIV.2005.09649
Liu, J., & Zhang, X. (2019). The role of domain knowledge in document selection from search results: the role of domain knowledge in document selection from search results. Journal of the Association for Information Science and Technology, 70(11), 1236–1247. https://doi.org/10.1002/asi.24199
Deng, C., Ji, X., Rainey, C., Zhang, J., & Lu, W. (2020). Integrating machine learning with human knowledge. iScience, 23(11), 101656. https://doi.org/10.1016/j.isci.2020.101656
Stecula, D. A., & Merkley, E. (2019). Framing climate change: economics, ideology, and uncertainty in American news media content from 1988 to 2014. Frontiers in Communication. https://doi.org/10.3389/fcomm.2019.00006
Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies. Jornal of Elections, Public Opinion and Parties, 30(4), 484–503. https://doi.org/10.1080/17457289.2019.1593182
Tucker, E. C., Capps, C. J., & Shamir, L. (2020). A data science approach to 138 years of congressional speeches. Heliyon, 6, e04417. https://doi.org/10.1016/j.heliyon.2020.e04417
Molnar, C. (2019). Interpretable Machine Learning. Morrisville, NC: Lulu.com.
Hemphill, L., Culotta, A., & Heston, M. (2016). #Polar scores: measuring partisanship using social media content. Journal of Information Technology and Politics, 13(4), 365–377. https://doi.org/10.1080/19331681.2016.1214093
Rumshisky, A., Gronas, M., Potash, P., Dubov, M., Romanov, A., Kulshreshtha, S. & Gribov, A. 2017. Combining network and language indicators for tracking conflict intensity. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (Eds.), Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK, September 13–15, 2017, Proceedings, Part II. as part of Lecture Notes in Computer Science 10540, Springer International Publishing, Cham, pp. 391–404. https://doi.org/10.1007/978-3-319-67256-4_31
Praet, S., Van Aelst, P., Daelemans, W., Kreutz, T., Peeters, J., Walgrave, S., & Martens, D. (2021). Comparing automated content analysis methods to distinguish issue communication by political parties on twitter. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3782027
Guntuku, S. C., Purtle, J., Meisel, Z. F., Merchant, R. M., & Agarwal, A. (2021). Partisan differences in twitter language among US legislators during the COVID-19 pandemic: Cross-sectional study. Journal of Medical Internet Research, 23(6), e27300. https://doi.org/10.2196/27300
Taddy, M. (2012). On Estimation and Selection for Topic Models, in: proceedings of the Fifteenth International conference on artificial intelligence and statistics. PMLR, 22, 1184–1193.
Rho, E. H. R., Mark, G., & Mazmanian, M. (2018). Fostering civil discourse online: Linguistic behavior in comments of #MeToo articles across political perspectives. Proceedings of the ACM of Human-Computer Interaction, 2, 1–28. https://doi.org/10.1145/3274416
Dornschneider, S., & Todd, J. (2020). Everyday sentiment among unionists and nationalists in a Northern Irish town. Irish Political Studies, 36(2), 185–213. https://doi.org/10.1080/07907184.2020.1743023
Budak, C., Goel, S., & Rao, J. M. (2016). Fair and balanced? Quantifying media bias through crowdsourced content analysis. Public Opinion Quarterly, 80(S1), 250–271. https://doi.org/10.1093/poq/nfw007
Lin, W.-H., Wilson, T., Wiebe, J., Hauptmann, A. (2006). Which side are you on? Identifying perspectives at the document and sentence levels. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X), June 2006. Association for Computational Linguistics, New York City, NY, USA. pp. 109–116.
Landeiro, V., & Culotta, A. (2018). Robust text classification under confounding shift. Journal of Artificial Intelligent Research, 63, 391–419. https://doi.org/10.1613/jair.1.11248
Widmer, P., Galletta, S., & Ash, E. (2020). Media slant is contagious. Center for Law and Economics Working Paper Series 14/2020. https://doi.org/10.3929/ethz-b-000454192
Driggs, D., Selby, I., Roberts, M., Gkrania-Klotsas, E., Rudd, J. H., Yang, G., et al. (2021). Machine learning for COVID-19 diagnosis and prognostication: lessons for amplifying the signal while reducing the noise. Radiology. Artificial intelligence, 3(4), https://doi.org/10.1148/ryai.2021210011.
Hullman, J., Kapoor, S., Nanayakkara, P., Gelman, A., & Narayanan, A. (2022). The worst of both worlds: A comparative analysis of errors in learning from data in psychology and machine learning (pp. 335–348). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3514094.3534196.