A scalable and reproducible manufacturing process for Phlebotomus papatasi salivary protein PpSP15, a vaccine candidate for leishmaniasis
Tài liệu tham khảo
Burza, 2018, Leishmaniasis, Lancet, 392, 951, 10.1016/S0140-6736(18)31204-2
Bailey, 2019, Cutaneous leishmaniasis and co-morbid major depressive disorder: a systematic review with burden estimates, PLoS Neglected Trop. Dis., 13, 10.1371/journal.pntd.0007092
Bailey, 2017, A new perspective on cutaneous leishmaniasis-Implications for global prevalence and burden of disease estimates, PLoS Neglected Trop. Dis., 11, 10.1371/journal.pntd.0005739
Salam, 2014, Leishmaniasis in the middle East: incidence and epidemiology, PLoS Neglected Trop. Dis., 8, 10.1371/journal.pntd.0003208
Du, 2016, Old world cutaneous leishmaniasis and refugee crises in the Middle East and North Africa, PLoS Neglected Trop. Dis., 10, 10.1371/journal.pntd.0004545
Hotez, 2018, The rise of leishmaniasis in the twenty-first century, Trans. R. Soc. Trop. Med. Hyg., 112, 421, 10.1093/trstmh/try075
Coleman, 2015, DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India, Proc. Natl. Acad. Sci. U. S. A., 112, 8573, 10.1073/pnas.1507782112
Bacon, 2013, The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas, Vaccine, 31, 480, 10.1016/j.vaccine.2012.11.032
Zabala-Peñafiel, 2020, The potential of live attenuated vaccines against Cutaneous Leishmaniasis, Exp. Parasitol., 107849, 10.1016/j.exppara.2020.107849
McAtee, 2017, Expression, purification, immunogenicity and protective efficacy of a recombinant nucleoside hydrolase from Leishmania donovani, a vaccine candidate for preventing cutaneous leishmaniasis, Protein Expr. Purif., 130, 129, 10.1016/j.pep.2016.10.008
Chen, 2020, Process characterization and biophysical analysis for a yeast-expressed Phlebotomus papatasi salivary protein (PpSP15) as a leishmania vaccine candidate, J. Pharmaceut. Sci., 109, 1673, 10.1016/j.xphs.2020.02.004
Gillespie, 2016, Status of vaccine research and development of vaccines for leishmaniasis, Vaccine, 34, 2992, 10.1016/j.vaccine.2015.12.071
Gomes, 2012, The immune response to sand fly salivary proteins and its influence on leishmania immunity, Front. Immunol., 3, 110, 10.3389/fimmu.2012.00110
Titus, 1988, Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity, Science, 239, 1306, 10.1126/science.3344436
Belkaid, 1998, Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis, J. Exp. Med., 188, 1941, 10.1084/jem.188.10.1941
Abdeladhim, 2014, What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity, Infect. Genet. Evol., 28, 691, 10.1016/j.meegid.2014.07.028
Waitumbi, 1998, Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages, Infect. Immun., 66, 1534, 10.1128/IAI.66.4.1534-1537.1998
Valenzuela, 2001, Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein, J. Exp. Med., 194, 331, 10.1084/jem.194.3.331
Tavares, 2011, Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia, PLoS Neglected Trop. Dis., 5, e1169, 10.1371/journal.pntd.0001169
Asojo, 2017, Structure of SALO, a leishmaniasis vaccine candidate from the sand fly Lutzomyia longipalpis, PLoS Neglected Trop. Dis., 11, 10.1371/journal.pntd.0005374
de Moura, 2013, Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection, PLoS Neglected Trop. Dis., 7, e2242, 10.1371/journal.pntd.0002242
Morris, 2001, Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection, J. Immunol., 167, 5226, 10.4049/jimmunol.167.9.5226
Oliveira, 2015, A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates, Sci. Transl. Med., 7, 10.1126/scitranslmed.aaa3043
Kamhawi, 2000, Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies, Science, 290, 1351, 10.1126/science.290.5495.1351
Oliveira, 2008, Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease, PLoS Neglected Trop. Dis., 2, e226, 10.1371/journal.pntd.0000226
Katebi, 2015, Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model, Mol. Immunol., 67, 501, 10.1016/j.molimm.2015.08.001
Kurtzman, 1998, Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie Leeuwenhoek, 73, 331, 10.1023/A:1001761008817
Looke, 2011, Extraction of genomic DNA from yeasts for PCR-based applications, Biotechniques, 50, 325, 10.2144/000113672
Zhu, 2005, A quantitative slot blot assay for host cell protein impurities in recombinant proteins expressed in E. coli, J. Immunol. Methods, 306, 40, 10.1016/j.jim.2005.07.021
Fernandez, 2008
Nascimento, 2012, Recombinant vaccines and the development of new vaccine strategies, Braz. J. Med. Biol. Res., 45, 1102, 10.1590/S0100-879X2012007500142
Kelleher, 2015, Expression, purification, crystallization and crystallographic study of Lutzomyia longipalpis LJL143, Acta Crystallogr F Struct Biol Commun, 71, 925, 10.1107/S2053230X15009486
Curti, 2014, Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate, Hum. Vaccines Immunother., 10, 1914, 10.4161/hv.28872