A scalable and reproducible manufacturing process for Phlebotomus papatasi salivary protein PpSP15, a vaccine candidate for leishmaniasis

Protein Expression and Purification - Tập 177 - Trang 105750 - 2021
Zhuyun Liu1,2, Rakhi Kundu1,2, Surafel Damena3, Amadeo B. Biter1,2, Mun Peak Nyon1,2, Wen-Hsiang Chen1,2, Bin Zhan1,2, Ulrich Strych1,2, Peter J. Hotez1,4,2,5,6, Maria Elena Bottazzi1,4,2,5
1National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA
2Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, 77030, USA
3Université Claude Bernard Lyon 1, Lyon, France
4National School of Tropical Medicine, Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX, 77030, USA
5Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA
6James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA

Tài liệu tham khảo

Burza, 2018, Leishmaniasis, Lancet, 392, 951, 10.1016/S0140-6736(18)31204-2 Bailey, 2019, Cutaneous leishmaniasis and co-morbid major depressive disorder: a systematic review with burden estimates, PLoS Neglected Trop. Dis., 13, 10.1371/journal.pntd.0007092 Bailey, 2017, A new perspective on cutaneous leishmaniasis-Implications for global prevalence and burden of disease estimates, PLoS Neglected Trop. Dis., 11, 10.1371/journal.pntd.0005739 Salam, 2014, Leishmaniasis in the middle East: incidence and epidemiology, PLoS Neglected Trop. Dis., 8, 10.1371/journal.pntd.0003208 Du, 2016, Old world cutaneous leishmaniasis and refugee crises in the Middle East and North Africa, PLoS Neglected Trop. Dis., 10, 10.1371/journal.pntd.0004545 Hotez, 2018, The rise of leishmaniasis in the twenty-first century, Trans. R. Soc. Trop. Med. Hyg., 112, 421, 10.1093/trstmh/try075 Coleman, 2015, DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India, Proc. Natl. Acad. Sci. U. S. A., 112, 8573, 10.1073/pnas.1507782112 Bacon, 2013, The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas, Vaccine, 31, 480, 10.1016/j.vaccine.2012.11.032 Zabala-Peñafiel, 2020, The potential of live attenuated vaccines against Cutaneous Leishmaniasis, Exp. Parasitol., 107849, 10.1016/j.exppara.2020.107849 McAtee, 2017, Expression, purification, immunogenicity and protective efficacy of a recombinant nucleoside hydrolase from Leishmania donovani, a vaccine candidate for preventing cutaneous leishmaniasis, Protein Expr. Purif., 130, 129, 10.1016/j.pep.2016.10.008 Chen, 2020, Process characterization and biophysical analysis for a yeast-expressed Phlebotomus papatasi salivary protein (PpSP15) as a leishmania vaccine candidate, J. Pharmaceut. Sci., 109, 1673, 10.1016/j.xphs.2020.02.004 Gillespie, 2016, Status of vaccine research and development of vaccines for leishmaniasis, Vaccine, 34, 2992, 10.1016/j.vaccine.2015.12.071 Gomes, 2012, The immune response to sand fly salivary proteins and its influence on leishmania immunity, Front. Immunol., 3, 110, 10.3389/fimmu.2012.00110 Titus, 1988, Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity, Science, 239, 1306, 10.1126/science.3344436 Belkaid, 1998, Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis, J. Exp. Med., 188, 1941, 10.1084/jem.188.10.1941 Abdeladhim, 2014, What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity, Infect. Genet. Evol., 28, 691, 10.1016/j.meegid.2014.07.028 Waitumbi, 1998, Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages, Infect. Immun., 66, 1534, 10.1128/IAI.66.4.1534-1537.1998 Valenzuela, 2001, Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein, J. Exp. Med., 194, 331, 10.1084/jem.194.3.331 Tavares, 2011, Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia, PLoS Neglected Trop. Dis., 5, e1169, 10.1371/journal.pntd.0001169 Asojo, 2017, Structure of SALO, a leishmaniasis vaccine candidate from the sand fly Lutzomyia longipalpis, PLoS Neglected Trop. Dis., 11, 10.1371/journal.pntd.0005374 de Moura, 2013, Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection, PLoS Neglected Trop. Dis., 7, e2242, 10.1371/journal.pntd.0002242 Morris, 2001, Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection, J. Immunol., 167, 5226, 10.4049/jimmunol.167.9.5226 Oliveira, 2015, A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates, Sci. Transl. Med., 7, 10.1126/scitranslmed.aaa3043 Kamhawi, 2000, Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies, Science, 290, 1351, 10.1126/science.290.5495.1351 Oliveira, 2008, Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease, PLoS Neglected Trop. Dis., 2, e226, 10.1371/journal.pntd.0000226 Katebi, 2015, Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model, Mol. Immunol., 67, 501, 10.1016/j.molimm.2015.08.001 Kurtzman, 1998, Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie Leeuwenhoek, 73, 331, 10.1023/A:1001761008817 Looke, 2011, Extraction of genomic DNA from yeasts for PCR-based applications, Biotechniques, 50, 325, 10.2144/000113672 Zhu, 2005, A quantitative slot blot assay for host cell protein impurities in recombinant proteins expressed in E. coli, J. Immunol. Methods, 306, 40, 10.1016/j.jim.2005.07.021 Fernandez, 2008 Nascimento, 2012, Recombinant vaccines and the development of new vaccine strategies, Braz. J. Med. Biol. Res., 45, 1102, 10.1590/S0100-879X2012007500142 Kelleher, 2015, Expression, purification, crystallization and crystallographic study of Lutzomyia longipalpis LJL143, Acta Crystallogr F Struct Biol Commun, 71, 925, 10.1107/S2053230X15009486 Curti, 2014, Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate, Hum. Vaccines Immunother., 10, 1914, 10.4161/hv.28872