A satellite-based approach to estimating spatially distributed groundwater recharge rates in a tropical wet sedimentary region despite cloudy conditions
Tài liệu tham khảo
Aeschbach-Hertig, 2012, Regional strategies for the accelerating global problem of groundwater depletion, Nat. Geosci., 5, 853, 10.1038/ngeo1617
Ahmadi, 2015, Mapping groundwater recharge areas using CRD and RIB methods in the semi-arid Neishaboor Plain, Iran, Arab. J. Geosci., 8, 2921, 10.1007/s12517-014-1321-2
Ajmal, 2015, Quantifying Excess Stormwater Using SCS-CN–Based Rainfall Runoff Models and Different Curve Number Determination Methods, J. Irrig. Drain. Eng., 141, 1, 10.1061/(ASCE)IR.1943-4774.0000805
Allen, 1998, Crop evapotranspiration - Guidelines for computing crop water requirements, 1
Alley, W.M., Konikow, L.F., 2015. Bringing GRACE down to Earth. Groundwater 53, 826–829. doi:10.1111/gwat.12379.
Alvares, 2013, Köppen’s climate classification map for Brazil, Meteorol. Z., 22, 711, 10.1127/0941-2948/2013/0507
Araújo Filho, J.C., Burgos, N., Lopes, O.F., Silva, F.H.B.B. Da, Medeiros, L.A.R., Melo Filho, H.F.R. De, Parahyba, R.D.B.V., Cavalcanti, A.C., Oliveira Neto, M.B. De, Silva, F.B.R.E., Leite, A.P., Santos, J.C.P. Dos, Souza Neto, N.C. De, Silva, A.B. Da, Luz, L.R.Qu.P. Da, Lima, P.C. De, Reis, R.M.G., Barros, A.H.C., 2000. Levantamento de reconhecimento de baixa e média intensidade dos solos do Estado de Pernambuco. … de Janeiro, Embrapa Solos 382.
Palharini, 2017, Climatological behavior of precipitating clouds in the northeast region of Brazil, Adv. Meteorol., 2017, 1, 10.1155/2017/5916150
Awadallah, 2017, Discussion of “Interfacing the geographic information system, remote sensing, and the soil conservation service-curve number method to estimate curve number and runoff volume in the ASIR region of Saudi Arabia” by Fawzi S. Mohammad, Jan Adamowski, Arab. J. Geosci., 10, 1, 10.1007/s12517-017-2984-2
Bastiaanssen, 1998, A remote sensing surface energy balance algorithm for land (SEBAL), Part 1: formulation, J. Hydrol., 212–213, 213, 10.1016/S0022-1694(98)00254-6
Brunner, 2004, Using remote sensing to regionalize local precipitation recharge rates obtained from the Chloride Method, J. Hydrol., 294, 241, 10.1016/j.jhydrol.2004.02.023
Brunner, 2007, How can remote sensing contribute in groundwater modeling?, Hydrogeol. J., 15, 5, 10.1007/s10040-006-0127-z
Cai, 2016, Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland, J. Hydrol., 535, 71, 10.1016/j.jhydrol.2016.01.066
Callahan, 2012, Estimating groundwater recharge in lowland watersheds, Hydrol. Process., 26, 2845, 10.1002/hyp.8356
Coelho, 2017, Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data, J. Hydrol., 548, 1, 10.1016/j.jhydrol.2017.02.054
CPRM – Geological Service of Brazil, 2020. SIAGAS – Groundwater Information System [WWW Document]. Law No. 9.433/1997.
Crosbie, 2015, Ground truthing groundwater-recharge estimates derived from remotely sensed evapotranspiration: a case in South Australia, Hydrogeol. J., 23, 335, 10.1007/s10040-014-1200-7
Crosbie, 2019, Constraining the magnitude and uncertainty of specific yield for use in the water table fluctuation method of estimating recharge, Water Resour. Res., 55, 7343, 10.1029/2019WR025285
Cuthbert, 2019, Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa, Nature, 572, 230, 10.1038/s41586-019-1441-7
Deshmukh, 2013, Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope, J. Hydrol., 492, 89, 10.1016/j.jhydrol.2013.04.001
Döll, 2014, Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res., 50, 5698, 10.1002/2014WR015595
Durán-Barroso, 2017, Sources of uncertainty in the NRCS CN model: recognition and solutions, Hydrol. Process., 31, 3898, 10.1002/hyp.11305
Famiglietti, 2014, The global groundwater crisis, Nat. Clim. Change, 4, 945, 10.1038/nclimate2425
Famiglietti, 2015, Satellites provide the big picture, Science, 349, 684, 10.1126/science.aac9238
Gadelha, 2019, Grid box-level evaluation of IMERG over Brazil at various space and time scales, Atmos. Res., 218, 231, 10.1016/j.atmosres.2018.12.001
Gokmen, 2013, Assessing groundwater storage changes using remote sensing-based evapotranspiration and precipitation at a large semiarid basin scale, J. Hydrometeorol., 14, 1733, 10.1175/JHM-D-12-0156.1
Graaf, 2017, Advances in Water Resources A global-scale two-layer transient groundwater model: development and application to groundwater depletion, Adv. Water Resour., 102, 53, 10.1016/j.advwatres.2017.01.011
Hawkins, 1985, Runoff probability, storm depth, and curve numbers, J. Irrig. Drainage Eng., 111, 330, 10.1061/(ASCE)0733-9437(1985)111:4(330)
Healy, 2002, Using groundwater levels to estimate recharge, Hydrogeol. J., 10, 91, 10.1007/s10040-001-0178-0
Hornero, 2016, Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: application to the Alcadozo Aquifer System (SE Spain), Sci. Total Environ., 568, 415, 10.1016/j.scitotenv.2016.06.011
Huete, 1988, A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295, 10.1016/0034-4257(88)90106-X
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., 2018. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation.
Jasechko, 2014, The pronounced seasonality of global groundwater recharge, Water Resour. Res., 50, 1, 10.1002/2014WR015809
Jiang, 2008, Development of a two-band enhanced vegetation index without a blue band, Remote Sens. Environ., 112, 3833, 10.1016/j.rse.2008.06.006
Khalaf, 2012, Estimating recharge distribution using remote sensing: A case study from the West Bank, J. Hydrol., 414–415, 354, 10.1016/j.jhydrol.2011.11.006
Lakshmi, 2018, A comparative study of available water in the major river basins of the world, J. Hydrol., 567, 510, 10.1016/j.jhydrol.2018.10.038
Lal, 2017, Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots, Hydrogeol. J., 25, 151, 10.1007/s10040-016-1460-5
Lal, 2019, Reverification of antecedent moisture condition dependent runoff curve number formulae using experimental data of Indian watersheds, Catena, 173, 48, 10.1016/j.catena.2018.09.002
Le, 2018, Comparison and bias correction of TMPA precipitation products over the Lower Part of Red-Thai Binh river basin of Vietnam, Remote Sens., 10, 1, 10.3390/rs10101582
Lenderink, 2007, Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11, 1145, 10.5194/hess-11-1145-2007
Lima, R.N. de S., Ribeiro, C.B. de M., 2018. Spatial variability of daily evapotranspiration in a mountainous watershed by coupling surface energy balance and solar radiation model with gridded weather dataset. Proceedings 2, 1–6. doi:10.3390/ecrs-2-05155.
Lu, 2019, Correcting GPM IMERG precipitation data over the Tianshan Mountains in China, J. Hydrol., 575, 1239, 10.1016/j.jhydrol.2019.06.019
Lucas, 2015, Evaluation of remotely sensed data for estimating recharge to an outcrop zone of the Guarani Aquifer System (South America), Hydrogeol. J., 23, 961, 10.1007/s10040-015-1246-1
MacDonald, 2021, Mapping groundwater recharge in Africa from ground observations and implications for water security, Environ. Res. Lett., 16, 034012, 10.1088/1748-9326/abd661
Maier, 2020, Spatial rainfall variability in urban environments — high-density precipitation measurements on a city-scale, Water, 12, 1157, 10.3390/w12041157
Malakar, 2019, Long-term groundwater recharge rates across India by in situ measurements, Hydrol. Earth Syst. Sci., 23, 711, 10.5194/hess-23-711-2019
Mathias, 2017, Soil moisture data as a constraint for groundwater recharge estimation, J. Hydrol., 552, 258, 10.1016/j.jhydrol.2017.06.040
Melo, 2017, Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone, Ann. Braz. Acad. Sci., 89, 391, 10.1590/0001-3765201720160264
Melo, 2020, The big picture of field hydrology studies in Brazil, Hydrol. Sci. J., 65, 1262, 10.1080/02626667.2020.1747618
Melo, 2021, Are remote sensing evapotranspiration models reliable across south American ecoregions?, Water Resour. Res., 57, 10.1029/2020WR028752
Melo, 2015, Estimate of groundwater recharge based on Water Balance in the unsaturated soil zone, Revista Brasileira de Ciência do Solo, 39, 1336, 10.1590/01000683rbcs20140740
Minnig, 2018, Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland, J. Hydrol., 563, 1135, 10.1016/j.jhydrol.2017.09.058
Moeck, 2020, A global-scale dataset of direct natural groundwater recharge rates: a review of variables, processes and relationships, Sci. Total Environ., 717, 1, 10.1016/j.scitotenv.2020.137042
Moghim, 2016, Bias-corrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia, Int. J. Climatol., 37, 621, 10.1002/joc.4728
Mohan, 2018, Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study, Hydrol. Earth Syst. Sci., 22, 2689, 10.5194/hess-22-2689-2018
Monteith, J.L., 1965. Evaporation and Environment, in: Symposium of the Society for Experimental Biology. pp. 205–234.
Mu, 2007, Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519, 10.1016/j.rse.2007.04.015
Mu, 2011, Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781, 10.1016/j.rse.2011.02.019
Műnch, 2013, Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the Sandveld, South Africa, Hydrogeol. J., 21, 1053, 10.1007/s10040-013-1004-1
NRCS – Natural Resources Conservation Service, 2004. Hydrologic soil-cover complexes, in: Mockus, V., Moody, H.F., NRCS (Eds.), Part 630 Hydrology, National Engineering Handbook. USDA – United States Department of Agriculture, Washington, DC, pp. 1–20.
O’Driscoll, 2010, Urbanization effects on watershed hydrology and in-stream processes in the Southern United States, Water, 2, 605, 10.3390/w2030605
Oliveira, L.M.M., Montenegro, S.M.G.L., Silva, B.B., Antonino, A.C.D. a, Moura, A.E.S.S., 2014. Real evapotranspiration in catchment area of northeastern Brazil through the SEBAL and MODIS products [Evapotranspiração real em bacia hidrográfica do Nordeste brasileiro por meio do SEBAL e produtos MODIS]. Revista Brasileira de Engenharia Agricola e Ambiental 18, 1039–1046. doi:10.1590/1807-1929/agriambi.v18n10p1039-1046.
Ponce, 1996, Runoff curve number: has it reached maturity?, J. Hydrol. Eng., 1, 11, 10.1061/(ASCE)1084-0699(1996)1:1(11)
Reichle, R.H., de Lannoy, G.J.M., Liu, Q., Ardizzone, J. V., Colliander, A., Conaty, A., Crow, W., Jackson, T.J., Jones, L.A., Kimball, J.S., Koster, R.D., P.Mahanama, S., Smith, E.B., Berg, A., Bircher, S., Bosch, D., Caldwell, T.G., Cosh, M., González-Zamora, Á., Collins, C.D.H., Jensen, K.H., Livingston, S., Lopez-Baeza, E., Martínez-Fernández, J., McNairn, H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger, J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, M., van der Velde, R., Jeffrey Walker, Wu, X., Zeng, Y., 2017. Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements. Journal of Hydrometeorology 18, 2621–2645. doi:10.1175/JHM-D-17-0063.1.
Reichle, R.H., Liu, Q., Koster, R.D., Ardizzone, J. v., Colliander, A., Crow, W.T., de Lannoy, G.J.M., Kimball, J.S., 2018. Soil Moisture Active Passive (SMAP) project assessment report for version 4 of the L4_SM sata product. Greenbelt, MD.
Rodell, 2004, The global land data assimilation system, Bull. Am. Meteorol. Soc., 85, 381, 10.1175/BAMS-85-3-381
Rodríguez-Huerta, 2020, A water balance model to estimate climate change impact on groundwater recharge in Yucatan Peninsula, Mexico, Hydrol. Sci. J., 65, 1, 10.1080/02626667.2019.1702989
Rossetti, 2011, Late Quaternary sedimentation in the Paraíba Basin, Northeastern Brazil: landform, sea level and tectonics in Eastern South America passive margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 300, 191, 10.1016/j.palaeo.2010.12.026
Rossetti, 2012, Contribution to the stratigraphy of the Onshore Paraíba Basin, Brazil, Anais da Academia Brasileira de Ciências, 84, 313, 10.1590/S0001-37652012005000026
Ruhoff, 2013, Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin, Hydrol. Sci. J., 58, 1658, 10.1080/02626667.2013.837578
Running, S.W., Mu, Q., Zhao, M., Moreno, A., 2017. NASA Earth Observing System MODIS Land Algorithm User’s Guide: MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3).
Salles, 2019, Seasonal effect on spatial and temporal consistency of the new GPM-based IMERG-v5 and GSMaP-v7 satellite precipitation estimates in Brazil’s Central Plateau Region, Water, 11, 668, 10.3390/w11040668
Sartori, 2005, Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação, Revista Brasileira de Recursos Hídricos, 10, 5, 10.21168/rbrh.v10n4.p5-18
Satgé, 2017, Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds, Remote Sens., 9, 1, 10.3390/rs9040369
Scanlon, 2002, Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18, 10.1007/s10040-001-0176-2
Semire, 2012, Ground validation of space-borne satellite rainfall products in Malaysia, Adv. Space Res., 50, 1241, 10.1016/j.asr.2012.06.031
Sharifi, 2019, Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques, J. Geophys. Res.: Atmos., 124, 789, 10.1029/2018JD028795
Shi, 2009, Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China, CATENA, 77, 1, 10.1016/j.catena.2008.11.006
Skofronick‐Jackson, 2018, The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations, Q. J. R. Meteorolog. Soc., 144, 27, 10.1002/qj.3313
Skofronick-Jackson, 2017, The Global Precipitation Measurement (GPM) Mission for science and society, Bull. Am. Meteorol. Soc., 98, 1679, 10.1175/BAMS-D-15-00306.1
Souza, 2018, Use of SMOS L3 soil moisture data: validation and drought assessment for Pernambuco state, Northeast Brazil, Remote Sens., 10, 1, 10.3390/rs10081314
Sur, 2015, Remote sensing-based evapotranspiration algorithm: A case study of all sky conditions on a regional scale, GIScience Remote Sens., 52, 627, 10.1080/15481603.2015.1056288
Szilágyi, 2012, Remote-sensing based groundwater recharge estimates in the Danube-Tisza sand plateau region of Hungary, J. Hydrol. Hydromech., 60, 64, 10.2478/v10098-012-0006-3
Szilagyi, 2011, Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA, Hydrogeol. J., 19, 1503, 10.1007/s10040-011-0769-3
Tan, 2017, Assessment of GPM and TRMM precipitation products over Singapore, Remote Sens., 9, 1, 10.3390/rs9070720
Tang, 2016, Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?, J. Hydrometeorol., 17, 121, 10.1175/JHM-D-15-0059.1
Tapley, 2004, GRACE measurements of mass variability in the Earth System, Science, 305, 503, 10.1126/science.1099192
Teixeira, 2013, Large-scale water productivity assessments with MODIS images in a changing semi-arid environment: A Brazilian case study, Remote Sens., 5, 5783, 10.3390/rs5115783
Usman, 2015, Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan, Environ. Earth Sci., 74, 1463, 10.1007/s12665-015-4139-7
Valle Junior, L.C.G. do, Rodrigues, D.B.B., Oliveira, P.T.S. de, 2019. Initial abstraction ratio and Curve Number estimation using rainfall and runoff data from a tropical watershed. RBRH 24, 1–9. doi:10.1590/2318-0331.241920170199.
Vasco, 2019, Satellite-based monitoring of groundwater depletion in California’s Central Valley, Sci. Rep., 9, 16053, 10.1038/s41598-019-52371-7
Veeck, 2020, Scale dynamics of the HIDROPIXEL high-resolution DEM-based distributed hydrologic modeling approach, Environ. Modell. Software, 127, 104695, 10.1016/j.envsoft.2020.104695
Verma, 2017, A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation, Hydrol. Sci. J., 62, 1891, 10.1080/02626667.2017.1334166
Vu, 2019, Estimating groundwater recharge for Hanoi, Vietnam, Sci. Total Environ., 651, 1047, 10.1016/j.scitotenv.2018.09.225
Wada, 2010, Global depletion of groundwater resources, Geophys. Res. Lett., 37, 1, 10.1029/2010GL044571
Wahr, 2004, Time-variable gravity from GRACE: first results, Geophys. Res. Lett., 31, 1, 10.1029/2004GL019779
Walker, 2019, Insights from a multi-method recharge estimation comparison study, Groundwater, 57, 245, 10.1111/gwat.12801
Weber, 2004, A critical analysis of the cumulative rainfall departure concept, Ground Water, 42, 935, 10.1111/j.1745-6584.2004.t01-11-.x
Wendland, 2007, Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring, J. Hydrol., 342, 261, 10.1016/j.jhydrol.2007.05.033
Wiebe, 2020, On the sensitivity of modelled groundwater recharge estimates to rain gauge network scale, J. Hydrol., 585, 1, 10.1016/j.jhydrol.2020.124741
Yin, 2011, Groundwater-recharge estimation in the Ordos Plateau, China: Comparison of methods, Hydrogeol. J., 19, 1563, 10.1007/s10040-011-0777-3