A role for zinc in postsynaptic density asSAMbly and plasticity?

Trends in Biochemical Sciences - Tập 31 - Trang 366-373 - 2006
Eckart D. Gundelfinger1, Tobias M. Boeckers2, Marisa K. Baron3, James U. Bowie3
1Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
2Institute of Anatomy and Cell Biology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany
3Department of Chemistry and Biochemistry, Molecular Biology Institute and University of California at Los Angeles – US Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA

Tài liệu tham khảo

Ziff, 1997, Enlightening the postsynaptic density, Neuron, 19, 1163, 10.1016/S0896-6273(00)80409-2 Valtschanoff, 2001, Laminar organization of the NMDA receptor complex within the postsynaptic density, J. Neurosci., 21, 1211, 10.1523/JNEUROSCI.21-04-01211.2001 Garner, 2002, Molecular mechanisms of CNS synaptogenesis, Trends Neurosci., 25, 243, 10.1016/S0166-2236(02)02152-5 Kim, 2004, PDZ domain proteins of synapses, Nat. Rev. Neurosci., 5, 771, 10.1038/nrn1517 Ehlers, 2002, Molecular morphogens for dendritic spines, Trends Neurosci., 25, 64, 10.1016/S0166-2236(02)02061-1 Roussignol, 2005, Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons, J. Neurosci., 25, 3560, 10.1523/JNEUROSCI.4354-04.2005 Boeckers, 2002, ProSAP/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease, J. Neurochem., 81, 903, 10.1046/j.1471-4159.2002.00931.x Kennedy, 2000, Signal-processing machines at the postsynaptic density, Science, 290, 750, 10.1126/science.290.5492.750 Baron, 2006, An architectural framework that may lie at the core of the postsynaptic density, Science, 311, 531, 10.1126/science.1118995 Danscher, 2005, Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells, J. Histochem. Cytochem., 53, 141, 10.1369/jhc.4R6460.2005 Fredericksen, 2005, The neurobiology of zinc in health and disease, Nat. Rev. Neurosci., 6, 449, 10.1038/nrn1671 Sheng, 2000, The Shank family of scaffold proteins, J. Cell Sci., 113, 1851, 10.1242/jcs.113.11.1851 Boeckers, 2005, C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3, J. Neurochem., 92, 519, 10.1111/j.1471-4159.2004.02910.x Sala, 2001, Regulation of dendritic spine morphology and synaptic function by Shank and Homer, Neuron, 31, 115, 10.1016/S0896-6273(01)00339-7 Bonaglia, 2001, Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome, Am. J. Hum. Genet., 69, 261, 10.1086/321293 Wilson, 2003, Molecular characterization of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms, J. Med. Genet., 40, 575, 10.1136/jmg.40.8.575 Qiao, F. and Bowie, J.U. (2005) The many faces of SAM. Sci. STKE 2005, re7 Kwan, 2006, Saccharomyces cerevisiae Ste50 binds the MAPKKK Ste11 through a head-to-tail SAM domain interaction, J. Mol. Biol., 356, 142, 10.1016/j.jmb.2005.11.012 Bhattacharjya, 2005, Polymerization of the SAM domain of MAPKKK Ste11 from the budding yeast: implications for efficient signaling through the MAPK cascades, Protein Sci., 14, 828, 10.1110/ps.041122105 Kim, 2005, Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer, J. Biol. Chem., 280, 27769, 10.1074/jbc.M503055200 Qiao, 2004, Derepression by depolymerization; structural insights into the regulation of Yan by Mae, Cell, 118, 163, 10.1016/j.cell.2004.07.010 De Rycker, 2004, Tankyrase polymerization is controlled by its sterile α motif and poly(ADP-ribose) polymerase domains, Mol. Cell. Biol., 24, 9802, 10.1128/MCB.24.22.9802-9812.2004 Qiao, 2006, Mae inhibits Pointed-P2 transcriptional activity by blocking its MAPK docking site, EMBO J., 25, 70, 10.1038/sj.emboj.7600924 Song, 2005, Antagonistic regulation of Yan nuclear export by Mae and Crm1 may increase the stringency of the Ras response, Genes Dev., 19, 1767, 10.1101/gad.1327405 Aviv, 2006, Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p, Nat. Struct. Mol. Biol., 13, 168, 10.1038/nsmb1053 Oberstrass, 2006, Shape-specific recognition in the structure of the Vts1p SAM domain with RNA, Nat. Struct. Mol. Biol., 13, 160, 10.1038/nsmb1038 Naisbitt, 1999, Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin, Neuron, 23, 569, 10.1016/S0896-6273(00)80809-0 Jan, 2002, Structural role of zinc ions bound to postsynaptic densities, J. Neurochem., 83, 525, 10.1046/j.1471-4159.2002.01093.x Zuber, 2005, The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes, Proc. Natl. Acad. Sci. U. S. A., 102, 19192, 10.1073/pnas.0509527102 Sindreu, 2003, Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus, Cereb. Cortex, 13, 823, 10.1093/cercor/13.8.823 Choi, 1998, Zinc and brain injury, Annu. Rev. Neurosci., 21, 347, 10.1146/annurev.neuro.21.1.347 Li, 2001, Rapid translocation of Zn2+ from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation, J. Neurophysiol., 86, 2597, 10.1152/jn.2001.86.5.2597 Li, 2001, Induction of mossy fiber→CA3 long-term potentiation requires translocation of synaptically released Zn2+, J. Neurosci., 21, 8015, 10.1523/JNEUROSCI.21-20-08015.2001 Jia, 2002, Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurons, J. Physiol., 543, 35, 10.1113/jphysiol.2002.020172 Bockers, 2004, Differential expression and dendritic transcript localization of Shank family members: Identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA, Mol. Cell. Neurosci., 26, 182, 10.1016/j.mcn.2004.01.009 Triller, 2005, Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!, Trends Neurosci., 28, 133, 10.1016/j.tins.2005.01.001 Matus, 2000, Actin-based plasticity in dendritic spines, Science, 290, 754, 10.1126/science.290.5492.754 Dillon, 2005, The actin cytoskeleton: integrating form and function at the synapse, Annu. Rev. Neurosci., 28, 25, 10.1146/annurev.neuro.28.061604.135757 Qualmann, 2004, Linkage of the actin cytoskeleton to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family, J. Neurosci., 24, 2481, 10.1523/JNEUROSCI.5479-03.2004 Buchs, 1996, Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses, Proc. Natl. Acad. Sci. U. S. A., 93, 8040, 10.1073/pnas.93.15.8040 Kay, 2006, Imaging synaptic zinc: promises and perils, Trends Neurosci., 29, 200, 10.1016/j.tins.2006.02.004 Bockmann, 2002, ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53, J. Neurochem., 83, 1013, 10.1046/j.1471-4159.2002.01204.x Soltau, 2002, The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein CDC42, Mol. Cell. Neurosci., 21, 575, 10.1006/mcne.2002.1201 Quitsch, 2005, Postsynaptic Shank antagonizes dendrite branching induced by leucine-rich repeat protein Densin 180, J. Neurosci., 25, 479, 10.1523/JNEUROSCI.2699-04.2005 Bredt, 2003, AMPA receptor trafficking at excitatory synapses, Neuron, 40, 361, 10.1016/S0896-6273(03)00640-8 Uemura, 2004, Direct interaction of GluRδ2 with Shank scaffold proteins in cerebellar Purkinje cells, Mol. Cell. Neurosci., 26, 330, 10.1016/j.mcn.2004.02.007 Mc Williams, 2005, Shank 2E binds NaPi cotransporter at the apical membrane of proximal tubule cells, Am. J. Physiol. Cell Physiol., 289, C1042, 10.1152/ajpcell.00568.2004 Olson, 2005, G-protein coupled receptor modulation of striatal Cav1.3 L-type Ca2+ channels is dependent on a Shank-binding domain, J. Neurosci., 25, 1050, 10.1523/JNEUROSCI.3327-04.2005 Zhang, 2005, Association of Cav1.3 L-type calcium channels with Shank, J. Neurosci., 25, 1037, 10.1523/JNEUROSCI.4554-04.2005 Kim, 2004, Inhibitory regulation of cystic fibrosis transmembrane conductance regulator anion-transporting activities by Shank2, J. Biol. Chem., 279, 10389, 10.1074/jbc.M312871200 Park, 2003, The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the βPix guanine nucleotide exchange factor for Rac1 and CDC42, J. Biol. Chem., 278, 19220, 10.1074/jbc.M301052200 Hwang, 2005, The interaction of phospholipase Cβ3 with Shank2 regulates mGluR-mediated calcium signal, J. Biol. Chem., 280, 12467, 10.1074/jbc.M410740200 Schuetz, 2004, The neuronal scaffold protein, Shank, mediates receptor tyrosine kinase signalling and biological function, J. Cell Biol., 167, 945, 10.1083/jcb.200404108 Wendhold, D. et al. ProSAP interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine associated Rap-GAP (SPAR) to the scaffolding protein ProSAP2/Shank3. J. Biol. Chem. (in press) Chang, 2004, Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc, Chem. Biol., 11, 203, 10.1016/j.chembiol.2004.01.017