A role for the claustrum in cognitive control

Trends in Cognitive Sciences - Tập 26 - Trang 1133-1152 - 2022
Maxwell B. Madden1, Brent W. Stewart1,2,3, Michael G. White1, Samuel R. Krimmel2,3, Houman Qadir1, Frederick S. Barrett4,5,6, David A. Seminowicz2,3,7, Brian N. Mathur1,8
1Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
2Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
3Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
4Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224 USA
5Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
6Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
7Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
8Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA

Tài liệu tham khảo

Macchi, 1981, The organization of the claustroneocortical projections in the cat studied by means of the HRP retrograde axonal transport, J. Comp. Neurol., 195, 681, 10.1002/cne.901950411 Baizer, 1997, Projections from the claustrum to the prelunate gyrus in the monkey, Exp. Brain Res., 113, 564, 10.1007/PL00005607 Sadowski, 1997, Rat's claustrum shows two main cortico-related zones, Brain Res., 756, 147, 10.1016/S0006-8993(97)00135-2 Tanne-Gariepy, 2002, Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey, J. Comp. Neurol., 454, 140, 10.1002/cne.10425 Hur, 2005, Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected], J. Comp. Neurol., 483, 351, 10.1002/cne.20444 Reser, 2017, Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortices of the common marmoset (Callithrix jacchus), J. Comp. Neurol., 525, 1421, 10.1002/cne.24009 Reser, 2014, Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella), Front. Syst. Neurosci., 8, 123, 10.3389/fnsys.2014.00123 Milardi, 2015, Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography, Cereb. Cortex, 25, 406, 10.1093/cercor/bht231 Arrigo, 2017, Inter-hemispheric claustral connections in human brain: a constrained spherical deconvolution-based study, Clin. Neuroradiol., 27, 275, 10.1007/s00062-015-0492-x Torgerson, 2015, The DTI connectivity of the human claustrum, Hum. Brain Mapp., 36, 827, 10.1002/hbm.22667 Wang, 2017, Organization of the connections between claustrum and cortex in the mouse, J. Comp. Neurol., 525, 1317, 10.1002/cne.24047 White, 2017, Cortical hierarchy governs rat claustrocortical circuit organization, J. Comp. Neurol., 525, 1347, 10.1002/cne.23970 Zingg, 2018, Input-output organization of the mouse claustrum, J. Comp. Neurol., 526, 2428, 10.1002/cne.24502 Butler, 2002, Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes, Brain Behav. Evol., 60, 230, 10.1159/000066698 Ashwell, 2004, The claustrum is not missing from all monotreme brains, Brain Behav. Evol., 64, 223, 10.1159/000080243 Suarez, 2018, A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum, Proc. Natl. Acad. Sci. U. S. A., 115, 9622, 10.1073/pnas.1808262115 Norimoto, 2020, A claustrum in reptiles and its role in slow-wave sleep, Nature, 578, 413, 10.1038/s41586-020-1993-6 Puelles, 2022, Current status of the hypothesis of a claustro-insular homolog in sauropsids, Brain Behav. Evol., 96, 212, 10.1159/000520742 Puelles, 2016, Selective early expression of the orphan nuclear receptor Nr4a2 identifies the claustrum homolog in the avian mesopallium: impact on sauropsidian/mammalian pallium comparisons, J. Comp. Neurol., 524, 665, 10.1002/cne.23902 Graf, 2020, Identification of mouse claustral neuron types based on their intrinsic electrical properties, eNeuro, 7, 10.1523/ENEURO.0216-20.2020 Brown, 2017, New breakthroughs in understanding the role of functional interactions between the neocortex and the claustrum, J. Neurosci., 37, 10877, 10.1523/JNEUROSCI.1837-17.2017 White, 2018, Claustrum circuit components for top-down input processing and cortical broadcast, Brain Struct. Funct., 223, 3945, 10.1007/s00429-018-1731-0 Chorazyna, 1965, Changes in auditory conditioning in dogs after lesions of the claustrum, Proc. XXIII Int. Cong. Physiol. Sci. Tokyo, 13, 456 Spector, 1974, Sensory properties of single neurons of cat's claustrum, Brain Res., 66, 39, 10.1016/0006-8993(74)90077-8 Segundo, 1956, Unitary responses to afferent volleys in lenticular nucleus and claustrum, J. Neurophysiol., 19, 325, 10.1152/jn.1956.19.4.325 Ettlinger, 1990, Cross-modal performance: behavioural processes, phylogenetic considerations and neural mechanisms, Behav. Brain Res., 40, 169, 10.1016/0166-4328(90)90075-P Crick, 2005, What is the function of the claustrum?, Philos. Trans. R. Soc. B Biol. Sci., 360, 1271, 10.1098/rstb.2005.1661 Alloway, 2009, Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisking behavior, J. Comp. Neurol., 515, 548, 10.1002/cne.22073 Smith, 2012, Rat claustrum coordinates but does not integrate somatosensory and motor cortical information, J. Neurosci., 32, 8583, 10.1523/JNEUROSCI.1524-12.2012 Chevee, 2022, Neural activity in the mouse claustrum in a cross-modal sensory selection task, Neuron, 110, 486, 10.1016/j.neuron.2021.11.013 Smythies, 2012, The functional anatomy of the claustrum: the net that binds, WMC Neurosci., 2012, 3182 Smythies, 2014, Hypotheses relating to the function of the claustrum, 299 Hadjikhani, 1998, Cross-modal transfer of information between the tactile and the visual representations in the human brain: a positron emission tomographic study, J. Neurosci., 18, 1072, 10.1523/JNEUROSCI.18-03-01072.1998 Remedios, 2010, Unimodal responses prevail within the multisensory claustrum, J. Neurosci., 30, 12902, 10.1523/JNEUROSCI.2937-10.2010 Bickel, 2019, Electrical stimulation of the human claustrum, Epilepsy Behav., 97, 296, 10.1016/j.yebeh.2019.03.051 Reus-García, 2020, The claustrum is involved in cognitive processes related to the classical conditioning of eyelid responses in behaving rabbits, Cereb. Cortex, 31, 281, 10.1093/cercor/bhaa225 Botvinick, 2007, Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function, Cogn. Affect. Behav. Neurosci., 7, 356, 10.3758/CABN.7.4.356 Carter, 2007, Anterior cingulate cortex and conflict detection: an update of theory and data, Cogn. Affect. Behav. Neurosci., 7, 367, 10.3758/CABN.7.4.367 Menon, 2010, Saliency, switching, attention and control: a network model of insula function, Brain Struct. Funct., 214, 655, 10.1007/s00429-010-0262-0 Mathur, 2014, The claustrum in review, Front. Syst. Neurosci., 8, 48, 10.3389/fnsys.2014.00048 Remedios, 2014, A role of the claustrum in auditory scene analysis by reflecting sensory change, Front. Syst. Neurosci., 8, 44, 10.3389/fnsys.2014.00044 Goll, 2015, Attention: the claustrum, Trends Neurosci., 38, 486, 10.1016/j.tins.2015.05.006 Crick, 1984, Function of the thalamic reticular complex: the searchlight hypothesis, Proc. Natl. Acad. Sci. U. S. A., 81, 4586, 10.1073/pnas.81.14.4586 Smith, 2019, A role for the claustrum in salience processing?, Front. Neuroanat., 13, 64, 10.3389/fnana.2019.00064 Basso, 2021, Unraveling circuits of visual perception and cognition through the superior colliculus, Neuron, 109, 918, 10.1016/j.neuron.2021.01.013 Jackson, 2020, The anatomy and physiology of claustrum-cortex interactions, Annu. Rev. Neurosci., 43, 231, 10.1146/annurev-neuro-092519-101637 Gratton, 2018, Dynamics of cognitive control: theoretical bases, paradigms, and a view for the future, Psychophysiology, 55, 3, 10.1111/psyp.13016 Botvinick, 2001, Conflict monitoring and cognitive control, Psychol. Rev., 108, 624, 10.1037/0033-295X.108.3.624 Desimone, 1995, Neural mechanisms of selective visual attention, Annu. Rev. Neurosci., 18, 193, 10.1146/annurev.ne.18.030195.001205 Tsaparlis, 2014, Cognitive demand, 1 Biswal, 1995, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn. Reson. Med., 34, 537, 10.1002/mrm.1910340409 Power, 2014, Studying brain organization via spontaneous fMRI signal, Neuron, 84, 681, 10.1016/j.neuron.2014.09.007 Greicius, 2003, Functional connectivity in the resting brain: a network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. U. S. A., 100, 253, 10.1073/pnas.0135058100 Buckner, 2019, The brain's default network: updated anatomy, physiology and evolving insights, Nat. Rev. Neurosci., 20, 593, 10.1038/s41583-019-0212-7 Gratton, 2018, Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation, Neuron, 98, 439, 10.1016/j.neuron.2018.03.035 Bressler, 2010, Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci., 14, 277, 10.1016/j.tics.2010.04.004 Chuang, 2017, Functional networks and network perturbations in rodents, NeuroImage, 163, 419, 10.1016/j.neuroimage.2017.09.038 Lu, 2012, Rat brains also have a default mode network, Proc. Natl. Acad. Sci. U. S. A., 109, 3979, 10.1073/pnas.1200506109 Gozzi, 2016, Large-scale functional connectivity networks in the rodent brain, NeuroImage, 127, 496, 10.1016/j.neuroimage.2015.12.017 Arsenault, 2018, Attention shifts recruit the monkey default mode network, J. Neurosci., 38, 1202, 10.1523/JNEUROSCI.1111-17.2017 Vincent, 2007, Intrinsic functional architecture in the anaesthetized monkey brain, Nature, 447, 83, 10.1038/nature05758 Vincent, 2008, Evidence for a frontoparietal control system revealed by intrinsic functional connectivity, J. Neurophysiol., 100, 3328, 10.1152/jn.90355.2008 Bressler, 1995, Large-scale cortical networks and cognition, Brain Res. Rev., 20, 288, 10.1016/0165-0173(94)00016-I Mantini, 2011, Default mode of brain function in monkeys, J. Neurosci., 31, 12954, 10.1523/JNEUROSCI.2318-11.2011 Yeo, 2011, The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J. Neurophysiol., 106, 1125, 10.1152/jn.00338.2011 Power, 2011, Functional network organization of the human brain, Neuron, 72, 665, 10.1016/j.neuron.2011.09.006 Cole, 2014, Intrinsic and task-evoked network architectures of the human brain, Neuron, 83, 238, 10.1016/j.neuron.2014.05.014 Glasser, 2016, A multi-modal parcellation of human cerebral cortex, Nature, 536, 171, 10.1038/nature18933 Gordon, 2017, Precision functional mapping of individual human brains, Neuron, 95, 791, 10.1016/j.neuron.2017.07.011 Spreng, 2010, Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition, NeuroImage, 53, 303, 10.1016/j.neuroimage.2010.06.016 Fox, 2005, The human brain is intrinsically organized into dynamic, anticorrelated functional networks, Proc. Natl. Acad. Sci. U. S. A., 102, 9673, 10.1073/pnas.0504136102 Menon, 2022, The role of PFC networks in cognitive control and executive function, Neuropsychopharmacology, 47, 90, 10.1038/s41386-021-01152-w Szczepanski, 2013, Functional and structural architecture of the human dorsal frontoparietal attention network, Proc. Natl. Acad. Sci. U. S. A., 110, 15806, 10.1073/pnas.1313903110 Corbetta, 2002, Control of goal-directed and stimulus-driven attention in the brain, Nat. Rev. Neurosci., 3, 201, 10.1038/nrn755 Seeley, 2007, Dissociable intrinsic connectivity networks for salience processing and executive control, J. Neurosci., 27, 2349, 10.1523/JNEUROSCI.5587-06.2007 Dosenbach, 2007, Distinct brain networks for adaptive and stable task control in humans, Proc. Natl. Acad. Sci. U. S. A., 104, 11073, 10.1073/pnas.0704320104 Dosenbach, 2006, A core system for the implementation of task sets, Neuron, 50, 799, 10.1016/j.neuron.2006.04.031 Wu, 2019, Anterior insular cortex is a bottleneck of cognitive control, NeuroImage, 195, 490, 10.1016/j.neuroimage.2019.02.042 Dosenbach, 2008, A dual-networks architecture of top-down control, Trends Cogn. Sci., 12, 99, 10.1016/j.tics.2008.01.001 van den Heuvel, 2011, Rich-club organization of the human connectome, J. Neurosci., 31, 15775, 10.1523/JNEUROSCI.3539-11.2011 Bertolero, 2017, The diverse club, Nat. Commun., 8, 10.1038/s41467-017-01189-w Crossley, 2014, The hubs of the human connectome are generally implicated in the anatomy of brain disorders, Brain, 137, 2382, 10.1093/brain/awu132 Zuhorn, 2021, Parainfectious encephalitis in COVID-19: “the claustrum sign”, J. Neurol., 268, 2031, 10.1007/s00415-020-10185-y Sener, 1993, The claustrum on MRI: normal anatomy, and the bright claustrum as a new sign in Wilson's disease, Pediatr. Radiol., 23, 594, 10.1007/BF02014975 Selemon, 1988, Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci., 8, 4049, 10.1523/JNEUROSCI.08-11-04049.1988 Petrides, 2007, Efferent association pathways from the rostral prefrontal cortex in the macaque monkey, J. Neurosci., 27, 11573, 10.1523/JNEUROSCI.2419-07.2007 Stepniewska, 2018, Frontal eye field in prosimian galagos: intracortical microstimulation and tracing studies, J. Comp. Neurol., 526, 626, 10.1002/cne.24355 Pearson, 1982, The organization of the connections between the cortex and the claustrum in the monkey, Brain Res., 234, 435, 10.1016/0006-8993(82)90883-6 Vogt, 1979, Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey, Science, 204, 205, 10.1126/science.107587 Shenhav, 2013, The expected value of control: an integrative theory of anterior cingulate cortex function, Neuron, 79, 217, 10.1016/j.neuron.2013.07.007 Buschman, 2007, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, 315, 1860, 10.1126/science.1138071 Gregoriou, 2009, High-frequency, long-range coupling between prefrontal and visual cortex during attention, Science, 324, 1207, 10.1126/science.1171402 Grent, 2007, Timing and sequence of brain activity in top-down control of visual-spatial attention, PLoS Biol., 5 Li, 2010, Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans, Brain Res., 1344, 173, 10.1016/j.brainres.2010.05.016 White, 2018, Anterior cingulate cortex input to the claustrum is required for top-down action control, Cell Rep., 22, 84, 10.1016/j.celrep.2017.12.023 Smith, 2010, Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex, J. Neurosci., 30, 16832, 10.1523/JNEUROSCI.4438-10.2010 White, 2018, Frontal cortical control of posterior sensory and association cortices through the claustrum, Brain Struct. Funct., 223, 2999, 10.1007/s00429-018-1661-x Chia, 2020, Synaptic connectivity between the cortex and claustrum is organized into functional modules, Curr. Biol., 30, 2777, 10.1016/j.cub.2020.05.031 Leichnetz, 2001, Connections of the medial posterior parietal cortex (area 7m) in the monkey, Anat. Rec., 263, 215, 10.1002/ar.1082 Kastner, 2000, Mechanisms of visual attention in the human cortex, Annu. Rev. Neurosci., 23, 315, 10.1146/annurev.neuro.23.1.315 Fan, 2005, The activation of attentional networks, NeuroImage, 26, 471, 10.1016/j.neuroimage.2005.02.004 Sheline, 2009, The default mode network and self-referential processes in depression, Proc. Natl. Acad. Sci. U. S. A., 106, 1942, 10.1073/pnas.0812686106 Buckner, 2008, The brain's default network: anatomy, function, and relevance to disease, Ann. N. Y. Acad. Sci., 1124, 1, 10.1196/annals.1440.011 Raichle, 2001, A default mode of brain function, Proc. Natl. Acad. Sci. U. S. A., 98, 676, 10.1073/pnas.98.2.676 Baleydier, 1980, The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis, Brain, 103, 525, 10.1093/brain/103.3.525 Weber, 1984, Subcortical projections of the inferior parietal cortex (area 7) in the stump-tailed monkey, J. Comp. Neurol., 224, 206, 10.1002/cne.902240204 Insausti, 1987, The entorhinal cortex of the monkey: III. Subcortical afferents, J. Comp. Neurol., 264, 396, 10.1002/cne.902640307 Mufson, 1982, Insula of the old world monkey. II: afferent cortical input and comments on the claustrum, J. Comp. Neurol., 212, 23, 10.1002/cne.902120103 Buckner, 2019, Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey, Nat. Commun., 10, 1976, 10.1038/s41467-019-09812-8 Liu, 2019, Anatomical and functional investigation of the marmoset default mode network, Nat. Commun., 10, 1 Burman, 2011, Subcortical projections to the frontal pole in the marmoset monkey, Eur. J. Neurosci., 34, 303, 10.1111/j.1460-9568.2011.07744.x Krimmel, 2019, Resting state functional connectivity and cognitive task-related activation of the human claustrum, NeuroImage, 196, 59, 10.1016/j.neuroimage.2019.03.075 Barrett, 2020, Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention, NeuroImage, 218, 10.1016/j.neuroimage.2020.116980 Pasqualetti, 1996, Comparative anatomical distribution of serotonin 1A, 1Dα and 2A receptor mRNAs in human brain postmorten, Mol. Brain Res., 39, 223, 10.1016/0169-328X(96)00026-5 Pompeiano, 1994, Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors, Mol. Brain Res., 23, 163, 10.1016/0169-328X(94)90223-2 Hamada, 1998, Localization of 5-HT2A receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken, Mol. Brain Res., 54, 199, 10.1016/S0169-328X(97)00322-7 López-Gimenez, 1997, Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907, Naunyn Schmiedeberg's Arch. Pharmacol., 356, 446, 10.1007/PL00005075 López-Giménez, 2001, Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H] MDL100, 907 autoradiography and in situ hybridization studies, J. Comp. Neurol., 429, 571, 10.1002/1096-9861(20010122)429:4<571::AID-CNE5>3.0.CO;2-X Zea-Ponce, 2002, Pharmacokinetics and brain distribution in non human primate of R (-)[123I] DOI, a 5HT (2A/2C) serotonin agonist, Nucl. Med. Biol., 29, 575, 10.1016/S0969-8051(02)00306-2 Hall, 2000, Autoradiographic localization of 5-HT2A receptors in the human brain using [3H] M100907 and [11C] M100907, Synapse, 38, 421, 10.1002/1098-2396(20001215)38:4<421::AID-SYN7>3.0.CO;2-X Raut, 2021, Global waves synchronize the brain’s functional systems with fluctuating arousal, Sci. Adv., 7, 10.1126/sciadv.abf2709 White, 2020, The mouse claustrum is required for optimal behavioral performance under high cognitive demand, Biol. Psychiatry, 88, 719, 10.1016/j.biopsych.2020.03.020 Atlan, 2018, The claustrum supports resilience to distraction, Curr. Biol., 28, 2752, 10.1016/j.cub.2018.06.068 Kim, 2016, Synaptic organization of the neuronal circuits of the claustrum, J. Neurosci., 36, 773, 10.1523/JNEUROSCI.3643-15.2016 Orman, 2017, Claustrum of the short-tailed fruit bat, Carollia perspicillata: alignment of cellular orientation and functional connectivity, J. Comp. Neurol., 525, 1459, 10.1002/cne.24036 Narikiyo, 2020, The claustrum coordinates cortical slow-wave activity, Nat. Neurosci., 23, 741, 10.1038/s41593-020-0625-7 Jackson, 2018, Inhibitory control of prefrontal cortex by the claustrum, Neuron, 99, 1029, 10.1016/j.neuron.2018.07.031 Vidyasagar, 2019, An integrated neuronal model of claustral function in timing the synchrony between cortical areas, Front. Neural Circ., 13, 3, 10.3389/fncir.2019.00003 Whitesell, 2021, Regional, layer, and cell-type-specific connectivity of the mouse default mode network, Neuron, 109, 545, 10.1016/j.neuron.2020.11.011 Saalmann, 2012, The pulvinar regulates information transmission between cortical areas based on attention demands, Science, 337, 753, 10.1126/science.1223082 Clemente-Perez, 2017, Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms, Cell Rep., 19, 2130, 10.1016/j.celrep.2017.05.044 Steriade, 1984, The thalamus as a neuronal oscillator, Brain Res. Rev., 8, 1, 10.1016/0165-0173(84)90017-1 Schmitt, 2017, Thalamic amplification of cortical connectivity sustains attentional control, Nature, 545, 219, 10.1038/nature22073 Bolkan, 2017, Thalamic projections sustain prefrontal activity during working memory maintenance, Nat. Neurosci., 20, 987, 10.1038/nn.4568 Yantis, 2002, Transient neural activity in human parietal cortex during spatial attention shifts, Nat. Neurosci., 5, 995, 10.1038/nn921 Wimmer, 2015, Thalamic control of sensory selection in divided attention, Nature, 526, 705, 10.1038/nature15398 McAlonan, 2006, Attentional modulation of thalamic reticular neurons, J. Neurosci., 26, 4444, 10.1523/JNEUROSCI.5602-05.2006 Sridharan, 2008, A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks, Proc. Natl. Acad. Sci. U. S. A., 105, 12569, 10.1073/pnas.0800005105 Huang, 2021, Anterior insula regulates brain network transitions that gate conscious access, Cell Rep., 35, 10.1016/j.celrep.2021.109081 Lesh, 2011, Cognitive control deficits in schizophrenia: mechanisms and meaning, Neuropsychopharmacology, 36, 316, 10.1038/npp.2010.156 Wilcox, 2014, Cognitive control in alcohol use disorder: deficits and clinical relevance, Rev. Neurosci., 25, 1, 10.1515/revneuro-2013-0054 Douglas, 1999, Cognitive control processes in attention deficit/hyperactivity disorder, 105 Harvey, 2005, Cognitive control and brain resources in major depression: an fMRI study using the n-back task, NeuroImage, 26, 860, 10.1016/j.neuroimage.2005.02.048 Zeier, 2012, Cognitive control deficits associated with antisocial personality disorder and psychopathy, Personal. Disord. Theory Res. Treat., 3, 283, 10.1037/a0023137 Mathur, 2009, Proteomic analysis illuminates a novel structural definition of the claustrum and insula, Cereb. Cortex, 19, 2372, 10.1093/cercor/bhn253 Puelles, 2014, Development and evolution of the claustrum, 119 Bruguier, 2020, In search of common developmental and evolutionary origin of the claustrum and subplate, J. Comp. Neurol., 528, 2956, 10.1002/cne.24922 Buzsaki, 2012, Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease, Dialogues Clin. Neurosci., 14, 345, 10.31887/DCNS.2012.14.4/gbuzsaki Fries, 2005, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn. Sci., 9, 474, 10.1016/j.tics.2005.08.011 Salinas, 2000, Impact of correlated synaptic input on output firing rate and variability in simple neuronal models, J. Neurosci., 20, 6193, 10.1523/JNEUROSCI.20-16-06193.2000 Sohal, 2009, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, 459, 698, 10.1038/nature07991 Morishima, 2009, Task-specific signal transmission from prefrontal cortex in visual selective attention, Nat. Neurosci., 12, 85, 10.1038/nn.2237 Herweg, 2016, Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: evidence from simultaneous EEG-fMRI, J. Neurosci., 36, 3579, 10.1523/JNEUROSCI.3629-15.2016 Mizuhara, 2004, A long-range cortical network emerging with theta oscillation in a mental task, NeuroReport, 15, 1233, 10.1097/01.wnr.0000126755.09715.b3 Mizuhara, 2005, Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI, NeuroImage, 27, 553, 10.1016/j.neuroimage.2005.04.030 Bachinger, 2017, Concurrent tACS-fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity, J. Neurosci., 37, 4766, 10.1523/JNEUROSCI.1756-16.2017 Violante, 2017, Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance, eLife, 6, 10.7554/eLife.22001 Cardin, 2009, Driving fast-spiking cells induces gamma rhythm and controls sensory responses, Nature, 459, 663, 10.1038/nature08002 Muhle-Karbe, 2014, Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation, J. Neurosci., 34, 12481, 10.1523/JNEUROSCI.4931-13.2014 Berry, 2017, Distinct frontoparietal networks underlying attentional effort and cognitive control, J. Cogn. Neurosci., 29, 1212, 10.1162/jocn_a_01112 Coull, 1996, A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory, Neuropsychologia, 34, 1085, 10.1016/0028-3932(96)00029-2 Dodds, 2011, Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging, Cereb. Cortex, 21, 1155, 10.1093/cercor/bhq187 Murray, 2017, Working memory and decision-making in a frontoparietal circuit model, J. Neurosci., 37, 12167, 10.1523/JNEUROSCI.0343-17.2017 Kong, 2013, Functional connectivity of the frontoparietal network predicts cognitive modulation of pain, Pain, 154, 459, 10.1016/j.pain.2012.12.004 Seminowicz, 2007, Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task, J. Neurophysiol., 97, 3651, 10.1152/jn.01210.2006 Zidda, 2018, Default mode network connectivity of fear- and anxiety-related cue and context conditioning, NeuroImage, 165, 190, 10.1016/j.neuroimage.2017.10.024 Kitanishi, 2017, Organization of the claustrum-to-entorhinal cortical connection in mice, J. Neurosci., 37, 269, 10.1523/JNEUROSCI.1360-16.2016 Cover, 2021, Rostral intralaminar thalamus engagement in cognition and behavior, Front. Behav. Neurosci., 15, 10.3389/fnbeh.2021.652764 Trulson, 1979, Raphe unit activity in freely moving cats: correlation with level of behavioral arousal, Brain Res., 163, 135, 10.1016/0006-8993(79)90157-4 Wu, 2004, Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs, J. Physiol., 554, 202, 10.1113/jphysiol.2003.052134 Wong, 2021, Changing the cortical conductor's tempo: neuromodulation of the claustrum, Front. Neural Circ., 15