A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans

Brain Stimulation - Tập 10 - Trang 817-827 - 2017
S. Colnaghi1,2, P. Colagiorgio3, M. Versino2,4, G. Koch5,6, E. D'Angelo4,7, S. Ramat3
1Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
2Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
3Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
4Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
5Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy
6Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
7Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy

Tài liệu tham khảo

Wolpert, 1998, Internal models in the cerebellum, Trends Cogn Sci, 2, 338, 10.1016/S1364-6613(98)01221-2 Miall, 2002, The cerebellum and the timing of coordinated eye and hand tracking, Brain Cogn, 48, 212, 10.1006/brcg.2001.1314 Robinson, 1975, Oculomotor control signals, 337 Iwamoto, 2010, Saccade adaptation as a model of learning in voluntary movements, Exp Brain Res, 204, 145, 10.1007/s00221-010-2314-3 Mosconi, 2013, Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD), PLoS One, 8, e63709, 10.1371/journal.pone.0063709 Panouilleres, 2009, Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: dual effect on saccadic adaptation, Hum Brain Mapp, 33, 1512, 10.1002/hbm.21301 Waespe, 1992, Enduring dysmetria and impaired gain adaptivity of saccadic eye movements in Wallenberg's lateral medullary syndrome, Brain, 115, 1123, 10.1093/brain/115.4.1125 Desmurget, 1998, Functional anatomy of saccadic adaptation in humans, Nat Neurosci, 1, 524, 10.1038/2241 Desmurget, 2000, Functional adaptation of reactive saccades in humans: a PET study, Exp Brain Res, 132, 243, 10.1007/s002210000342 Straube, 2001, Cerebellar lesions impair rapid saccade amplitude adaptation, Neurology, 57, 2105, 10.1212/WNL.57.11.2105 Robinson, 2002, Cerebellar influences on saccade plasticity, Ann N. Y Acad Sci, 956, 155, 10.1111/j.1749-6632.2002.tb02816.x Panouillères, 2013, Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades, Exp Brain Res, 231, 1, 10.1007/s00221-013-3662-6 Panouillères, 2015, The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study, JNeurosci, 35, 5471, 10.1523/JNEUROSCI.4064-14.2015 Avila, 2015, Cerebellar transcranial direct current stimulation effects on saccade adaptation, Neural Plast, 2015, 968, 10.1155/2015/968970 Gerardin, 2012, Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades, Neuroimage, 61, 1100, 10.1016/j.neuroimage.2012.03.037 Panouillères, 2014, A role for the parietal cortex in sensorimotor adaptation of saccades, Cereb Cortex, 24, 304, 10.1093/cercor/bhs312 Blurton, 2012, Differential cortical activation during saccadic adaptation, J Neurophysiol, 107, 1738, 10.1152/jn.00682.2011 Kase, 1980, Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation, J Physiol, 300, 539, 10.1113/jphysiol.1980.sp013178 Catz, 2008, Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response, Proc Natl Acad Sci U. S. A, 105, 7309, 10.1073/pnas.0706032105 Soetedjo, 2008, Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning?, J Neurophysiol, 100, 1949, 10.1152/jn.90526.2008 Kojima, 2010, Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning, J Neurosci, 30, 3715, 10.1523/JNEUROSCI.4953-09.2010 Prsa, 2011, The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning, Eur J Neurosci, 33, 2114, 10.1111/j.1460-9568.2011.07693.x Ito, 2002, The molecular organization of cerebellar long-term depression, Nat Rev Neurosci, 3, 896, 10.1038/nrn962 Gall, 2005, Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage, J Neurosci, 25, 4813, 10.1523/JNEUROSCI.0410-05.2005 D'Angelo, 2009, Timing and plasticity in the cerebellum: focus on the granular layer, Trends Neurosci, 32, 30, 10.1016/j.tins.2008.09.007 D'Errico, 2009, Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input, J Physiol, 587, 5843, 10.1113/jphysiol.2009.177162 D'Angelo, 2005, Synaptic plasticity at the cerebellum input stage: mechanisms and functional implications, Arch Ital Biol, 143, 143 Casado, 2002, Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression, Neuron, 33, 123, 10.1016/S0896-6273(01)00568-2 Chen, 1997, Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters, Electroencephalogr Clin Neurophysiol, 105, 415, 10.1016/S0924-980X(97)00036-2 Maeda, 2000, Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability, Exp Brain Res, 133, 425, 10.1007/s002210000432 Huang, 2005, Theta burst stimulation of the human motor cortex, Neuron, 45, 201, 10.1016/j.neuron.2004.12.033 Huang, 2011, The theoretical model of theta burst form of repetitive transcranial magnetic stimulation, Clin Neurophysiol, 122, 1011, 10.1016/j.clinph.2010.08.016 Koch, 2008, Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum, Clin Neurophysiol, 119, 2559, 10.1016/j.clinph.2008.08.008 Hoffland, 2012, Cerebellar theta burst stimulation impairs eye-blink classical conditioning, J Physiol, 590, 887, 10.1113/jphysiol.2011.218537 Monaco, 2014, Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning, Eur J Neurosci, 40, 3363, 10.1111/ejn.12700 Colnaghi, 2011, Theta-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans, Cerebellum, 10, 711, 10.1007/s12311-011-0282-1 Colnaghi, 2017, After effects of cerebellar continuous theta burst stimulation on reflexive saccades and smooth pursuit in humans, Cerebellum, 16, 10.1007/s12311-017-0852-y Colnaghi, 2016, Body sway increases after functional inactivation of the cerebellar vermis by cTBS, Cerebellum McLaughlin, 1967, Parametric adjustment in saccadic eye movements, Percept Psycophys, 2, 359, 10.3758/BF03210071 Volkmann, 1968, Time course of visual inhibition during voluntary saccades, J Opt Soc Am, 58, 562, 10.1364/JOSA.58.000562 Burr, 1982, Selective depression of motion sensitivity during saccades, J Physiol, 333, 1, 10.1113/jphysiol.1982.sp014434 Burr, 1994, Selective suppression of the magnocellular visual pathway during saccadic eye movements, Nature, 371, 511, 10.1038/371511a0 Chen-Harris, 2008, Adaptive control of saccades via internal feedback, J Neurosci, 28, 2804, 10.1523/JNEUROSCI.5300-07.2008 Albano, 1989, Rapid adaptation of saccadic amplitude in humans and monkeys, Invest Ophthalmol Vis Sci, 30, 1883 Erkelens, 1993, Selective adaptation of internally triggered saccades made to visual targets, Exp Brain Res, 93, 157, 10.1007/BF00227790 Frens, 1994, Transfer of short-term adaptation in human saccadic eye movements, Exp Brain Res, 100, 293, 10.1007/BF00227199 Fujita, 2002, Selective and delay adaptation of human saccades, Brain Res Cogn Brain Res, 13, 41, 10.1016/S0926-6410(01)00088-X Deubel, 1986, Adaptive gain control of saccadic eye movements, Hum Neurobiol, 5, 245 Albano, 1996, Adaptive changes in saccade amplitude: oculocentric or orbitocentric mapping?, Vis Res, 36, 2087, 10.1016/0042-6989(96)89627-1 Watanabe, 2003, Saccadic adaptation in the horizontal and vertical directions in normal subjects, Auris Nasus Larynx, 30, S41, 10.1016/S0385-8146(02)00119-0 Abel, 1978, Saccadic system plasticity in humans, Ann Neurol, 4, 313, 10.1002/ana.410040405 Miller, 1981, Saccadic plasticity: parametric adaptive control by retinal feedback, J Exp Psychol Hum Percept Perform, 7, 356, 10.1037/0096-1523.7.2.356 Semmlow, 1989, Mechanisms of short-term saccadic adaptation, J Exp Psychol Hum Percept Perform, 15, 249, 10.1037/0096-1523.15.2.249 Watanabe, 2000, Flexibility of saccade adaptation in the monkey: different gain states for saccades in the same direction, Exp Brain Res, 130, 169, 10.1007/s002219900220 Kojima, 2005, Effect of saccadic amplitude adaptation on subsequent adaptation of saccades in different directions, Neurosci Res, 53, 404, 10.1016/j.neures.2005.08.012 Rossini, 1994, Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee, Electroencephalogr Clin Neurophysiol, 91, 79, 10.1016/0013-4694(94)90029-9 Theoret, 2001, Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans, Neurosci Lett, 306, 29, 10.1016/S0304-3940(01)01860-2 Tofts, 1990, The distribution of induced currents in magnetic stimulation of the nervous system, Phys Med Biol, 35, 1119, 10.1088/0031-9155/35/8/008 Rothwell, 1997, Techniques and mechanisms of action of transcranial stimulation of the human motor cortex, J Neurosci Methods, 74, 113, 10.1016/S0165-0270(97)02242-5 Koch, 2010, Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity, Funct Neurol, 25, 159 Jenkinson, 2010, Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans, Cerebellum, 9, 548, 10.1007/s12311-010-0193-6 Kojima, 2011, Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation, Brain Res, 1401, 30, 10.1016/j.brainres.2011.05.027 Zee, 1976, Ocular motor abnormalities in hereditary cerebellar ataxia, Brain, 99, 207, 10.1093/brain/99.2.207 Straube, 1995, Differential effect of a bilateral deep cerebellar nuclei lesion on externally and internally triggered saccades in humans, Neuro-ophthalmology, 15, 67, 10.3109/01658109509009645 Huang, 2007, The after-effect of human theta burst stimulation is NMDA receptor dependent, Clin Neurophysiol, 118, 1028, 10.1016/j.clinph.2007.01.021 Dinse, 2003, Pharmacological modulation of perceptual learning and associated cortical reorganization, Science, 301, 91, 10.1126/science.1085423 Schwenkreis, 2003, NMDA-mediated mechanisms in cortical excitability changes after limb amputation, Acta Neurol Scand, 108, 179, 10.1034/j.1600-0404.2003.00114.x Schwenkreis, 2005, The NMDA antagonist memantine affects training induced motor cortex plasticity - a study using transcranial magnetic stimulation, BMC Neurosci, 35, 6 Rammsayer, 2006, Effects of pharmacologically induced changes in NMDA receptor activity on human timing and sensorimotor performance, Brain Res, 1073–1074, 407, 10.1016/j.brainres.2005.12.019 MacDermott, 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature, 321, 519, 10.1038/321519a0 Siebner, 2003, Transcranial magnetic stimulation: new insights into representational cortical plasticity, Exp Brain Res, 148, 1, 10.1007/s00221-002-1234-2 Ziemann, 2004, TMS induced plasticity in human cortex, Rev Neurosci, 15, 253, 10.1515/REVNEURO.2004.15.4.253 Watanabe, 1994, Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum, J Comp Neurol, 343, 513, 10.1002/cne.903430402 Piochon, 2007, NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell, J Neurosci, 27, 10797, 10.1523/JNEUROSCI.2422-07.2007 Renzi, 2007, Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice, J Physiol, 585, 91, 10.1113/jphysiol.2007.141531 D'Angelo, 1990, Dual-component NMDA receptor currents at a single central synapse, Nature, 346, 467, 10.1038/346467a0 D'Angelo, 1993, Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum, Neuroscience, 53, 121, 10.1016/0306-4522(93)90290-V D'Angelo, 1994, Voltage-dependent kinetics of N-methyl-D-aspartate synaptic currents in rat cerebellar granule cells, Eur J Neurosci, 6, 640, 10.1111/j.1460-9568.1994.tb00309.x D'Angelo, 1995, Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors, J Physiol, 484, 397, 10.1113/jphysiol.1995.sp020673 D'Angelo, 1997, Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ, J Neurophysiol, 78, 1631, 10.1152/jn.1997.78.3.1631 D'Angelo, 1999, Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum, J Neurophysiol, 81, 277, 10.1152/jn.1999.81.1.277 Armano, 2000, Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum, J Neurosci, 20, 5208, 10.1523/JNEUROSCI.20-14-05208.2000 Maffei, 2002, Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP, J Neurophysiol, 88, 627, 10.1152/jn.2002.88.2.627 Maffei, 2003, NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP, J Neurophysiol, 90, 2478, 10.1152/jn.00399.2003 Rossi, 2002, NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse, J Neurosci, 22, 9687, 10.1523/JNEUROSCI.22-22-09687.2002 Sola, 2004, Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum, J Physiol, 557, 843, 10.1113/jphysiol.2003.060285 Mapelli, 2007, The spatial organization of long-term synaptic plasticity at the input stage of cerebellum, J Neurosci, 27, 1285, 10.1523/JNEUROSCI.4873-06.2007 Roggeri, 2008, Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum, J Neurosci, 28, 6354, 10.1523/JNEUROSCI.5709-07.2008 Ito, 2006, Cerebellar circuitry as a neuronal machine, Prog Neurobiol, 78, 272, 10.1016/j.pneurobio.2006.02.006 Seja, 2012, Raising cytosolic Cl- in cerebellar granule cells affects their excitability and vestibulo-ocular learning, Embo J, 31, 1217, 10.1038/emboj.2011.488 Andreescu, 2011, NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning, Neuroscience, 176, 274, 10.1016/j.neuroscience.2010.12.024 Bidoret, 2015, Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons, Front Synaptic Neurosci, 1, 7 Bouvier, 2016, Burst-dependent bidirectional plasticity in the cerebellum is driven by presynaptic NMDA receptors, Cell Rep, 15, 104, 10.1016/j.celrep.2016.03.004 Farrant, 2003, Properties of GABA(A) receptor-mediated transmission at newly formed Golgi-granule cell synapses in the cerebellum, Neuropharmacology, 44, 181, 10.1016/S0028-3908(02)00363-5 Cesana, 2013, Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer, J Neurosci, 33, 12430, 10.1523/JNEUROSCI.4897-11.2013 Izquierdo, 1994, Pharmacological evidence for the role of long-term potentiation in memory, FASEB J, 8, 1139, 10.1096/fasebj.8.14.7958619 Danysz, 1994, Glutamate, learning and dementia - selection of evidence, Amino Acids, 7, 147, 10.1007/BF00814157 Aigner, 1995, Pharmacology of memory: cholinergic-glutamatergic interactions, Curr Opin Neurobiol, 5, 155, 10.1016/0959-4388(95)80021-2 Krystal, 1994, Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses, Arch Gen Psych, 51, 199, 10.1001/archpsyc.1994.03950030035004 Newcomer, 1999, Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis, Neuropsychopharmacology, 20, 106, 10.1016/S0893-133X(98)00067-0 Schugens, 1997, The NMDA antagonist memantine impairs classical eyeblink conditioning in humans, Neurosci Lett, 224, 57, 10.1016/S0304-3940(97)13452-8 Rockstroh, 1996, Effects of the novel NMDA-receptor antagonist SDZ EAA 494 on memory and attention in humans, Psychopharmacology, 124, 261, 10.1007/BF02246666 Jarvis, 2003, Memantine, Drugs Aging, 20, 465, 10.2165/00002512-200320060-00005 Huang, 2008, Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human, Cereb Cortex, 18, 563, 10.1093/cercor/bhm087 Rammsayer, 2001, Effects of pharmacologically induced changes in NMDA-receptor activity on long-term memory in humans, Learn Mem, 8, 20, 10.1101/lm.33701 Schwenkreis, 1999, Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability, Neurosci Lett, 270, 137, 10.1016/S0304-3940(99)00492-9