A robust background regression based score estimation algorithm for hyperspectral anomaly detection

ISPRS Journal of Photogrammetry and Remote Sensing - Tập 122 - Trang 126-144 - 2016
Rui Zhao1,2, Bo Du3,2, Liangpei Zhang1,2, Lefei Zhang3
1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China
2Collaborative Innovation Center of Geospatial Technology, Wuhan University, China
3School of Computer, Wuhan University, China

Tài liệu tham khảo

Altmann, 2012, Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery, IEEE Trans. Image Process., 21, 3017, 10.1109/TIP.2012.2187668 Bachmann, 2005, Exploiting manifold geometry in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 43, 441, 10.1109/TGRS.2004.842292 Banerjee, 2006, A support vector method for anomaly detection in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 44, 2282, 10.1109/TGRS.2006.873019 Billor, 2000, Bacon: blocked adaptive computationally efficient outlier nominators, Comput. Stat. Data Anal., 34, 279, 10.1016/S0167-9473(99)00101-2 Bioucas-Dias, 2013, Hyperspectral remote sensing data analysis and future challenges, IEEE Trans. Geosci. Remote Sens., 1, 6, 10.1109/MGRS.2013.2244672 Carlotto, 2005, A cluster-based approach for detecting man-made objects and changes in imagery, IEEE Trans. Geosci. Remote Sens., 43, 374, 10.1109/TGRS.2004.841481 Chang, 2010, Multiparameter receiver operating characteristic analysis for signal detection and classification, IEEE Sens. J., 10, 423, 10.1109/JSEN.2009.2038120 Chang, 2002, Anomaly detection and classification for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 40, 1314, 10.1109/TGRS.2002.800280 Chiang, 2011, Unsupervised target detection in hyperspectral images using projection pursuit, IEEE Trans. Geosci. Remote Sens., 39, 1380, 10.1109/36.934071 Clemencon, 2005 Du, 2011, Random-selection-based anomaly detector for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 49, 1578, 10.1109/TGRS.2010.2081677 Du, 2014, A discriminative metric learning based anomaly detection method, IEEE Trans. Geosci. Remote Sens., 52, 6844, 10.1109/TGRS.2014.2303895 Eismann, 2009, Automated hyperspectral cueing for civilian search and rescue, Proc. IEEE, 97, 1031, 10.1109/JPROC.2009.2013561 Gander, 1989, A constrained eigenvalue problem, Linear Algebra Appl., 114, 815, 10.1016/0024-3795(89)90494-1 Goetz, 1985, Imaging spectrometry for earth remote sensing, Science, 228, 1147, 10.1126/science.228.4704.1147 Goldberg, 2007, Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., 4, 581, 10.1109/LGRS.2007.903083 Goodin, 2004, The effect of solar illumination angle and sensor view angle on observed patterns of spatial structure in tallgrass prairie, IEEE Trans. Geosci. Remote Sens., 42, 154, 10.1109/TGRS.2003.815674 Gu, 2008, A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., 5, 43, 10.1109/LGRS.2007.907304 Heesung, 2005, Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 43, 388, 10.1109/TGRS.2004.841487 Hirsh, 2007 Hsu, 2007, Feature extraction of hyperspectral images using wavelet and matching pursuit, ISPRS J. Photogramm. Remote Sens., 62, 78, 10.1016/j.isprsjprs.2006.12.004 Huang, 2015, Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding, ISPRS J. Photogramm. Remote Sens., 106, 42, 10.1016/j.isprsjprs.2015.04.015 Jia, 2015, Hyperspectral image classification using discontinuity adaptive class-relative nonlocal means and energy fusion strategy, ISPRS J. Photogramm. Remote Sens., 106, 16, 10.1016/j.isprsjprs.2015.04.005 Johnson, 2013, AutoGAD: an improved ICA-based hyperspectral anomaly detection algorithm, IEEE Trans. Geosci. Remote Sens., 51, 3492, 10.1109/TGRS.2012.2222418 Keshava, 2002, Spectral unmixing, IEEE Signal Process. Mag., 19, 44, 10.1109/79.974727 Kraut, 2011, Adaptive subspace detectors, IEEE Trans. Signal Process., 49, 1, 10.1109/78.890324 Landgrebe, 2002, Hyperspectral image data analysis, IEEE Signal Process. Mag., 19, 17, 10.1109/79.974718 Li, 2015, Collaborative representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens., 53, 1463, 10.1109/TGRS.2014.2343955 Li, 2015, Collaborative representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens., 53, 1463, 10.1109/TGRS.2014.2343955 Liu, 2004, A nested spatial window-based approach to target detection for hyperspectral imagery Liu, 2008, Multiple-window anomaly detection for hyperspectral imagery Manolakis, 2002, Detection algorithms for hyperspectral imaging applications, IEEE Signal Process. Mag., 19, 29, 10.1109/79.974724 Manolakis, 2003, Hyperspectral image processing for automatic target detection applications, Linc. Lab. J., 14, 79 Masellia, 1994, Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications, ISPRS J. Photogramm. Remote Sens., 49, 13, 10.1016/0924-2716(94)90062-0 Matteoli, 2010, A tutorial overview of anomaly detection in hyperspectral images, IEEE Aerosp. Electron. Syst. Mag., 25, 5, 10.1109/MAES.2010.5546306 Matteoli, 2013, Models and methods for automated background density estimation in hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens., 51, 2837, 10.1109/TGRS.2012.2214392 Melgani, 2004, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., 42, 1778, 10.1109/TGRS.2004.831865 Meola, 2011, Detecting changes in hyperspectral imagery using a model-based approach, IEEE Trans. Geosci. Remote Sens., 49, 2647, 10.1109/TGRS.2011.2109726 Noiboar, 2007, Anomaly detection based on wavelet domain GARCH random field modeling, IEEE Trans. Geosci. Remote Sens., 45, 1361, 10.1109/TGRS.2007.893741 Plaza, 2009, Recent advances in techniques for hyperspectral image processing, Remote Sens. Environ., 113, S110, 10.1016/j.rse.2007.07.028 Reed, 1990, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Trans. Acoust. Speech Signal Process., 38, 1760, 10.1109/29.60107 Roberts, 1993, Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data, Remote Sens. Environ., 44, 255, 10.1016/0034-4257(93)90020-X Sandmeier, 1999, The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization, J. Geophys. Res. Atmos., 104, 9547, 10.1029/1999JD900094 Schaum, 2007 Scholkopf, 2002 Scholkopf, 2001, Estimating the support of a high-dimensional distribution, Neural Comput., 13, 1443, 10.1162/089976601750264965 Shaw, 2002, Signal processing for hyperspectral image exploitation, IEEE Signal Process. Mag., 19, 12, 10.1109/79.974715 Smetek, T.E., Bauer, K.W., 2007. Finding Hyperspectral anomalies using multivariate outlier detection. In: Proc. IEEE Aerospace Conference. Stein, 2002, Anomaly detection from hyperspectral imagery, IEEE Signal Process. Mag., 19, 58, 10.1109/79.974730 Tax, 2004, Support vector data description, Mach. Learning, 54, 45, 10.1023/B:MACH.0000008084.60811.49 Xu, 2016, Anomaly detection in hyperspectral images based on low-rank and sparse representation, IEEE Trans. Geosci. Remote Sens., 54, 1990, 10.1109/TGRS.2015.2493201 Yan, 2007, Graph embedding and extensions: a general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell., 29, 40, 10.1109/TPAMI.2007.250598 Zhang, 2013, A modified stochastic neighbor embedding for remote sensing image multiple features dimension reduction, ISPRS J. Photogramm. Remote Sens., 83, 30, 10.1016/j.isprsjprs.2013.05.009 Zhao, 2014, A robust nonlinear hyperspectral anomaly detection approach, IEEE J. Sel. Top. Appl. Earth Observations Remote Sens., 7, 1227, 10.1109/JSTARS.2014.2311995 Zhu, 2014, Structured sparse method for hyperspectral unmixing, ISPRS J. Photogramm. Remote Sens., 88, 101, 10.1016/j.isprsjprs.2013.11.014