A roadmap for the computation of persistent homology

Nina Otter1, Mason A. Porter1, Ulrike Tillmann1, Peter Grindrod1, Heather A. Harrington1
1Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM (2010) A survey of statistical network models. Found Trends Mach Learn 2:129-233

Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications. SIAM, Philadelphia

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1:27-64

de Silva V, Ghrist R (2007) Coverage in sensor networks via persistent homology. Algebraic Geom Topol 7:339-358

Kovacev-Nikolic V, Bubenik P, Nikolić D, Heo G (2014) Using persistent homology and dynamical distances to analyze protein binding. arXiv:1412.1394

Gameiro M, Hiraoka Y, Izumi S, Kramár M, Mischaikow K, Nanda V (2015) A topological measurement of protein compressibility. Jpn J Ind Appl Math 32:1-17

Xia K, Wei G-W (2014) Persistent homology analysis of protein structure, flexibility, and folding. Int J Numer Methods Biomed Eng 30:814-844

Xia K, Li Z, Mu L (2016) Multiscale persistent functions for biomolecular structure characterization. arXiv:1612.08311

Emmett K, Schweinhart B, Rabadán R (2016) Multiscale topology of chromatin folding. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), BICT’15. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, pp 177-180

Rizvi A, Camara P, Kandror E, Roberts T, Schieren I, Maniatis T, Rabadan R (2017) Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol 35:551-560. doi: 10.1038/nbt.3854

Xia K, Feng X, Tong Y, Wei GW (2015) Persistent homology for the quantitative prediction of fullerene stability. J Comput Chem 36:408-422

Bhattacharya S, Ghrist R, Kumar V (2015) Persistent homology for path planning in uncertain environments. IEEE Trans Robot 31:578-590

Pokorny FT, Hawasly M, Ramamoorthy S (2016) Topological trajectory classification with filtrations of simplicial complexes and persistent homology. Int J Robot Res 35:204-223

Vasudevan R, Ames A, Bajcsy R (2013) Persistent homology for automatic determination of human-data based cost of bipedal walking. Nonlinear Anal Hybrid Syst 7:101-115

Chung MK, Bubenik P, Kim PT (2009) Persistence diagrams of cortical surface data. In: Prince JL, Pham DL, Myers KJ (eds) Information processing in medical imaging. Lecture notes in computer science, vol 5636. Springer, Berlin, pp 386-397

Guillemard M, Boche H, Kutyniok G, Philipp F (2013) Signal analysis with frame theory and persistent homology. In: 10th international conference on sampling theory and applications, pp 309-312

Perea JA, Deckard A, Haase SB, Harer J (2015) Sw1pers: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform 16:Article ID 257

Nicolau M, Levine AJ, Carlsson G (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci USA 108:7265-7270

DeWoskin D, Climent J, Cruz-White I, Vazquez M, Park C, Arsuaga J (2010) Applications of computational homology to the analysis of treatment response in breast cancer patients. Topol Appl 157:157-164

Crawford L, Monod A, Chen AX, Mukherjee S, Rabadán R (2016) Topological summaries of tumor images improve prediction of disease free survival in glioblastoma multiforme. arXiv:1611.06818

Singh N, Couture HD, Marron JS, Perou C, Niethammer M (2014) Topological descriptors of histology images. In: Wu G, Zhang D, Zhou L (eds) Machine learning in medical imaging. Lecture notes in computer science, vol 8679. Springer, Cham, pp 231-239

Chan JM, Carlsson G, Rabadan R (2013) Topology of viral evolution. Proc Natl Acad Sci USA 110:18566-18571

Cámara PG, Levine AJ, Rabadán R (2016) Inference of ancestral recombination graphs through topological data analysis. PLoS Comput Biol 12:Article ID e1005071

Emmett K, Rosenbloom D, Camara P, Rabadan R (2014) Parametric inference using persistence diagrams: a case study in population genetics. arXiv:1406.4582

Carlsson G, Ishkhanov T, de Silva V, Zomorodian A (2008) On the local behavior of spaces of natural images. Int J Comput Vis 76:1-12

Taylor D, Klimm F, Harrington HA, Kramár M, Mischaikow K, Porter MA, Mucha PJ (2015) Topological data analysis of contagion maps for examining spreading processes on networks. Nat Commun 6:Article ID 7723

Lo D, Park B (2016) Modeling the spread of the Zika virus using topological data analysis. arXiv:1612.03554

MacPherson R, Schweinhart B (2012) Measuring shape with topology. J Math Phys 53:Article ID 073516

Kramár M, Goullet A, Kondic L, Mischaikow K (2013) Persistence of force networks in compressed granular media. Phys Rev E 87:Article ID 042207

Kramár M, Goullet A, Kondic L, Mischaikow K (2014) Quantifying force networks in particulate systems. Physica D 283:37-55

Hiraoka Y, Nakamura T, Hirata A, Escolar E, Matsue K, Nishiura Y (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proc Natl Acad Sci USA 113:7035-7040

Lee Y, Barthel SD, Dłotko P, Mohamad Moosavi S, Hess K, Smit B (2017) Pore-geometry recognition: on the importance of quantifying similarity in nanoporous materials. arXiv:1701.06953

Leibon G, Pauls S, Rockmore D, Savell R (2008) Topological structures in the equities market network. Proc Natl Acad Sci USA 105:20589-20594

Gidea M (2017) Topology data analysis of critical transitions in financial networks. arXiv:1701.06081

Giusti C, Ghrist R, Bassett D (2016) Two’s company and three (or more) is a simplex. J Comput Neurosci 41:1-14

Curto C (2017) What can topology tell us about the neural code? Bull, New Ser, Am Math Soc 54:63-78

Dłotko P, Hess K, Levi R, Nolte M, Reimann M, Scolamiero M, Turner K, Muller E, Markram H (2016) Topological analysis of the connectome of digital reconstructions of neural microcircuits. arXiv:1601.01580

Kanari L, Dłotko P, Scolamiero M, Levi R, Shillcock J, Hess K, Markram H (2016) Quantifying topological invariants of neuronal morphologies. arXiv:1603.08432

Lord L-D, Expert P, Fernandes HM, Petri G, Van Hartevelt TJ, Vaccarino F, Deco G, Turkheimer F, Kringelbach M (2016) Insights into brain architectures from the homological scaffolds of functional connectivity networks. Front Syst Neurosci 10:Article ID 85

Bendich P, Marron JS, Miller E, Pieloch A, Skwerer S (2016) Persistent homology analysis of brain artery trees. Ann Appl Stat 10:198-218

Yoo J, Kim EY, Ahn YM, Ye JC (2016) Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages. J Neurosci Methods 267:1-13

Dabaghian Y, Brandt VL, Frank LM (2014) Reconceiving the hippocampal map as a topological template. eLife 3:Article ID e03476

Sizemore A, Giusti C, Bassett D (2017) Classification of weighted networks through mesoscale homological features. J Complex Netw 5:245-273

Pal S, Moore TJ, Ramanathan R, Swami A (2017) Comparative topological signatures of growing collaboration networks. In: Complex networks VIII. Springer, Cham, pp 201-209

Carstens CJ, Horadam KJ (2013) Persistent homology of collaboration networks. Math Probl Eng 2013:Article ID 815035

Bajardi P, Delfino M, Panisson A, Petri G, Tizzoni M (2015) Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Sci 4:Article ID 3

Topaz CM, Ziegelmeier L, Halverson T (2015) Topological data analysis of biological aggregation models. PLoS ONE 10:Article ID e0126383

Maletic S, Zhao Y, Rajkovic M (2015) Persistent topological features of dynamical systems. arXiv:1510.06933

Zhu X (2013) Persistent homology: an introduction and a new text representation for natural language processing. In: Proceedings of the twenty-third international joint conference on artificial intelligence, IJCAI ’13, Beijing, China AAAI Press, Menlo Park, pp 1953-1959

Wang B, Wei G-W (2016) Object-oriented persistent homology. J Comput Phys 305:276-299

Stolz BJ, Harrington HA, Porter MA (2017) Persistent homology of time-dependent functional networks constructed from coupled time series. Chaos 27:Article ID 047410

Bendich P, Marron JS, Miller E, Pieloch A, Skwerer S (2016) Persistent homology analysis of brain artery trees. Ann Appl Stat 10:198-218

Adler R (2014) TOPOS, and why you should care about it. IMS Bull 43:4-5

Wagner H, Chen C, Vuçini E (2012) Efficient computation of persistent homology for cubical data. In: Peikert R, Hauser H, Carr H, Fuchs R (eds) Topological methods in data analysis and visualization II. Mathematics and visualization. Springer, Berlin, pp 91-106

Singh G, Mémoli F, Carlsson G (2007) Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Eurographics symposium on point-based graphics, pp 91-100

Ghrist R (2014) Elementary applied topology, 1.0 edn

Curry J (2013) Sheaves, cosheaves and applications. arXiv:1303.3255

Carlsson G (2009) Topology and data. Bull Am Math Soc 46:255-308

Edelsbrunner H, Letscher D, Zomorodian A (2002) Topological persistence and simplification. Discrete Comput Geom 28:511-533

Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom 33:249-274

Bauer U, Kerber M, Reininghaus J, Wagner H (2014) PHAT: persistent homology algorithms toolbox. In: Hong H, Yap C (eds) Mathematical software - ICMS 2014. Lecture notes in computer science, vol 8592. Springer, Berlin, pp 137-143. Software available at https://code.google.com/p/phat/

Bauer U, Kerber M, Reininghaus J (2014) DIPHA (a distributed persistent homology algorithm). https://code.google.com/p/dipha/

Morozov D Dionysus. http://www.mrzv.org/software/dionysus/

Nanda V Perseus, the persistent homology software. http://www.sas.upenn.edu/~vnanda/perseus

Tausz A, Vejdemo-Johansson M, Adams H (2014) JavaPlex: a research software package for persistent (co)homology. In: Hong H, Yap C (eds) Mathematical software - ICMS 2014. Lecture notes in computer science, vol 8592, pp 129-136. Software available at http://appliedtopology.github.io/javaplex/

Maria C, Boissonnat J-D, Glisse M, Yvinec M (2014) The Gudhi library: simplicial complexes and persistent homology. In: Hong H, Yap C (eds) Mathematical software - ICMS 2014. Lecture notes in computer science, vol 8592. Springer, Berlin, pp 167-174. Software available at https://project.inria.fr/gudhi/software/

Bauer U (2016) Ripser. https://github.com/Ripser/ripser

Fasy BT, Kim J, Lecci F, Maria C (2014) Introduction to the R package TDA. arXiv:1411.1830

Bubenik P, Dłotko P (2017) A persistence landscapes toolbox for topological statistics. J Symb Comput 78:91-114

Adams H, Tausz A JavaPlex tutorial. https://github.com/appliedtopology/javaplex

de Silva V, Morozov D, Vejdemo-Johansson M (2011) Dualities in persistent (co)homology. Inverse Probl 27:Article ID 124003

Nanda V (2012) Discrete Morse theory for filtrations. PhD thesis, Rutgers, The State University of New Jersey

Bauer U, Kerber M, Reininghaus J (2014) Distributed computation of persistent homology. In: 2014 proceedings of the sixteenth workshop on algorithm engineering and experiments (ALENEX). SIAM, Philadelphia, pp 31-38

Maria C (2014) Algorithms and data structures in computational topology. PhD thesis, Université de Nice-Sophia Antipolis. http://www-sop.inria.fr/members/Clement.Maria/docs/ClementMaria_PhDdissertation.pdf

Kaczynski T, Mischaikow K, Mrozek M (2004) Computational homology. Applied mathematical sciences, vol 157. Springer, New York

Cohen MM (1970) A course in simple homotopy theory. Graduate texts in mathematics. Springer, New York

Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge

Björner A (1995) Topological methods. In: Graham R, Grötschel M, Lovász L (eds) Handbook of combinatorics. Elsevier, Amsterdam, pp 1819-1872

Edelsbrunner H, Harer J (2010) Computational topology: an introduction. Applied mathematics. Am. Math. Soc., Providence

Eilenberg S, Steenrod NE (1952) Foundations of algebraic topology. Princeton mathematical series. Princeton University Press, Princeton

Oudot SY (2015) Persistence theory: from quiver representations to data analysis. AMS mathematical surveys and monographs, vol 209. Am. Math. Soc., Providence

Zomorodian A (2009) Topology for computing. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

Weinberger S (2011) What is…persistent homology? Not Am Math Soc 58:36-39

Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45:61-75

Edelsbrunner H, Harer J (2008) Persistent homology — a survey. In: Goodman JE, Pach J, Pollack R (eds) Surveys on discrete and computational geometry: twenty years later. Contemporary mathematics, vol 453. Am. Math. Soc., Providence, pp 257-282

Edelsbrunner H, Morozov D (2012) Persistent homology: theory and practice. In: Proceedings of the European congress of mathematics, pp 31-50

Patania A, Vaccarino F, Petri G (2017) Topological analysis of data. EPJ Data Sci 6(1):7

Petri G, Scolamiero M, Donato I, Vaccarino F (2013) Topological strata of weighted complex networks. PLoS ONE 8:Article ID e66506

Jonsson J (2007) Simplicial complexes of graphs. Lecture notes in mathematics. Springer, Berlin

Horak D, Maletić S, Rajković M (2009) Persistent homology of complex networks. J Stat Mech Theory Exp 2009:Article ID P03034

Bendich P, Edelsbrunner H, Kerber M (2010) Computing robustness and persistence for images. IEEE Trans Vis Comput Graph 16:1251-1260

Zhou W, Yan H (2014) Alpha shape and Delaunay triangulation in studies of protein-related interactions. Brief Bioinform 15:54-64

Xia K, Wei G-W (2016) A review of geometric, topological and graph theory apparatuses for the modeling and analysis of biomolecular data. arXiv:1612.01735

Zomorodian A (2010) Technical section: fast construction of the Vietoris–Rips complex. Comput Graph 34:263-271

Vietoris L (1927) Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math Ann 97:454-472

Kerber M, Sharathkumar R (2013) Approximate Čech complex in low and high dimensions. In: Cai L, Cheng S-W, Lam T-W (eds) 24th international symposium on algorithms and computation (ISAAC 2013). Lecture notes in computer science, vol 8283, pp 666-676

Boissonnat J-D, Devillers O, Hornus S (2009) Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension. In: Proceedings of the twenty-fifth annual symposium on computational geometry, SoCG ’09. ACM, New York, pp 208-216

Goodman JE, O’Rourke J (eds) (2004) Handbook of discrete and computational geometry, 2nd edn. CRC Press, Boca Raton

Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29:551-559

Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:43-72

Edelsbrunner H (1995) The union of balls and its dual shape. Discrete Comput Geom 13:415-440

Kurlin V (2015) A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space. Comput Graph Forum 34:253-262

Kurlin V (2015) http://kurlin.org/projects/persistent-skeletons.cpp

de Silva V (2008) A weak characterisation of the Delaunay triangulation. Geom Dedic 135:39-64

de Silva V, Carlsson G (2004) Topological estimation using witness complexes. In: Proceedings of the first Eurographics conference on point-based graphics, pp 157-166

Guibas LJ, Oudot SY (2008) Reconstruction using witness complexes. Discrete Comput Geom 40:325-356

Attali D, Edelsbrunner H, Mileyko Y (2007) Weak witnesses for Delaunay triangulations of submanifolds. In: Proceedings of the 2007 ACM symposium on solid and physical modeling, SPM ’07. ACM, New York, pp 143-150

Boissonnat J-D, Guibas LJ, Oudot SY (2009) Manifold reconstruction in arbitrary dimensions using witness complexes. Discrete Comput Geom 42:37-70

Dey TK, Fan F, Wang Y (2013) Graph induced complex on point data. In: Proceedings of the twenty-ninth annual symposium on computational geometry, SoCG ’13. ACM, New York, pp 107-116

Jyamiti research group (2013) GIComplex. http://web.cse.ohio-state.edu/~tamaldey/GIC/GICsoftware/

Sheehy DR (2013) Linear-size approximations to the Vietoris–Rips filtration. Discrete Comput Geom 49:778-796

Dey TK, Shi D, Wang Y (2016) SimBa: an efficient tool for approximating Rips-filtration persistence via simplicial batch-collapse. In: 24th annual European symposium on algorithms (ESA 2016). LIPIcs - Leibniz international proceedings in informatics, vol 57. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Saarbrücken, pp 35:1-35:16

Robin F (1998) Morse theory for cell complexes. Adv Math 134:90-145

Mischaikow K, Nanda V (2013) Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput Geom 50:330-353

Joswig M, Pfetsch ME (2006) Computing optimal Morse matchings. SIAM J Discrete Math 20:11-25

Barmak JA, Minian EG (2012) Strong homotopy types, nerves and collapses. Discrete Comput Geom 47:301-328

Wilkerson AC, Moore TJ, Swami A, Krim H (2013) Simplifying the homology of networks via strong collapses. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 5258-5262

Wilkerson AC, Chintakunta H, Krim H, Moore TJ, Swami A (2013) A distributed collapse of a network’s dimensionality. In: 2013 IEEE global conference on signal and information processing, pp 595-598

Wilkerson AC, Chintakunta H, Krim H (2014) Computing persistent features in big data: a distributed dimension reduction approach. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 11-15

Zomorodian A (2010) The tidy set: a minimal simplicial set for computing homology of clique complexes. In: Proceedings of the twenty-sixth annual symposium on computational geometry, SoCG ’10. ACM, New York, pp 257-266

Zomorodian A (2012) Topological data analysis. In: Zomorodian A (ed) Advances in applied and computational topology. Proceedings of symposia in applied mathematics, vol 70. Am. Math. Soc., Providence, pp 1-39

Morozov D (2005) Persistence algorithm takes cubic time in worst case. BioGeometry News (Feb 2005), Department of Computer Science, Duke University

Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh annual symposium on computational geometry, SoCG ’11. ACM, New York, pp 216-225

Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic progressions. J Symb Comput 9:251-280

Chen C, Kerber M (2011) Persistent homology computation with a twist. In: Proceedings of the 27th European workshop on computational geometry, pp 197-200

de Silva V, Morozov D, Vejdemo-Johansson M (2011) Persistent cohomology and circular coordinates. Discrete Comput Geom 45:737-759

Bauer U, Kerber M, Reininghaus J (2014) Clear and compress: computing persistent homology in chunks. In: Bremer P-T, Hotz I, Pascucci V, Peikert R (eds) Topological methods in data analysis and visualization III. Mathematics and visualization. Springer, Cham, pp 103-117

Boissonnat J-D, Maria C (2014) Computing persistent homology with various coefficient fields in a single pass. In: Schulz AS, Wagner D (eds) Algorithms - ESA 2014. Lecture notes in computer science, vol 8737. Springer, Berlin, pp 185-196

Bubenik P, Kim PT (2007) A statistical approach to persistent homology. Homol Homotopy Appl 9:337-362

Adler R, Bobrowski O, Weinberger S (2014) Crackle: the homology of noise. Discrete Comput Geom 52:680-704

Young J-G, Petri G, Vaccarino F, Patania A (2017) Construction of and efficient sampling from the simplicial configuration model. arXiv:1705.10298

Adler RJ, Bobrowski O, Borman MS, Subag E, Weinberger S (2010) Persistent homology for random fields and complexes. In: Borrowing strength: theory powering applications - a festschrift for Lawrence D. Brown. IMS collections, vol 6. Institute of Mathematical Statistics, Beachwood, pp 124-143

Kahle M (2014) Topology of random simplicial complexes: a survey. In: Applied algebraic topology: new directions and applications. Contemporary mathematics, vol 620. Am. Math. Soc., Providence, pp 221-241

Mileyko Y, Mukherjee S, Harer J (2011) Probability measures on the space of persistence diagrams. Inverse Probl 27:Article ID 124007

Turner K, Mileyko Y, Mukherjee S, Harer J (2014) Fréchet means for distributions of persistence diagrams. Discrete Comput Geom 52:44-70

Munch E, Turner K, Bendich P, Mukherjee S, Mattingly J, Harer J (2015) Probabilistic Fréchet means for time varying persistence diagrams. Electron J Stat 9:1173-1204

Kerber M, Morozov D, Nigmetov A (2016). https://bitbucket.org/grey_narn/hera

Kerber M, Morozov D, Nigmetov A (2016) Geometry helps to compare persistence diagrams. arXiv:1606.03357

Fasy BT, Kim J, Lecci F, Maria C, Rouvreau V TDA: statistical tools for topological data analysis. https://cran.r-project.org/web/packages/TDA/index.html

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2014) Confidence sets for persistence diagrams. Ann Stat 42:2301-2339

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014) Robust topological inference: distance to a measure and kernel distance. arXiv:1412.7197

Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16:77-102

Adcock A, Carlsson E, Carlsson G (2013) The ring of algebraic functions on persistence bar codes. arXiv:1304.0530

Chepushtanova S, Emerson T, Hanson E, Kirby M, Motta F, Neville R, Peterson C, Shipman P, Ziegelmeier L (2015) Persistence images: an alternative persistent homology representation. arXiv:1507.06217

Kwitt R, Huber S, Niethammer M, Lin W, Bauer U (2015) Statistical topological data analysis - a kernel perspective. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Red Hook, pp 3052-3060

Reininghaus J, Huber S, Bauer U, Kwitt R (2015) A stable multi-scale kernel for topological machine learning. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 4741-4748

Bobrowski O, Mukherjee S, Taylor J (2017) Topological consistency via kernel estimation. Bernoulli 23:288-328

Zhu X, Vartanian A, Bansal M, Nguyen D, Brandl L (2016) Stochastic multiresolution persistent homology kernel. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI’16. AAAI Press, Palo Alto, pp 2449-2455

Dłotko P Persistence landscape toolbox. https://www.math.upenn.edu/~dlotko/persistenceLandscape.html

Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete Comput Geom 37:103-120

Chazal F, Cohen-Steiner D, Glisse M, Guibas LJ, Oudot SY (2009) Proximity of persistence modules and their diagrams. In: Proceedings of the twenty-fifth annual symposium on computational geometry, SoCG ’09. ACM, New York, pp 237-246

Bubenik P, Scott JA (2014) Categorification of persistent homology. Discrete Comput Geom 51:600-627

Bubenik P, de Silva V, Scott J (2014) Metrics for generalized persistence modules. Found Comput Math 15:1501-1531

Carlsson G, de Silva V, Morozov D (2009) Zigzag persistent homology and real-valued functions. In: Proceedings of the twenty-fifth annual symposium on computational geometry, SoCG ’09. ACM, New York, pp 247-256

Dey TK, Fan F, Wang Y (2014) Computing topological persistence for simplicial maps. In: Proceedings of the thirtieth annual symposium on computational geometry, SoCG ’14. ACM, New York, pp 345-354

Carlsson G, Zomorodian A (2009) The theory of multidimensional persistence. Discrete Comput Geom 42:71-93

Lesnick M, Wright M (2016) RIVET: the rank invariant visualization and exploration tool. http://rivet.online/

Lesnick M, Wright M (2015) Interactive visualization of 2-D persistence modules. arXiv:1512.00180

Edelsbrunner H, Morozov D, Pascucci V (2006) Persistence-sensitive simplification functions on 2-manifolds. In: Proceedings of the twenty-second annual symposium on computational geometry, SoCG ’06. ACM, New York, pp 127-134

Perry P, de Silva V (2000– 2006) Plex. http://mii.stanford.edu/research/comptop/programs/

Binchi J, Merelli E, Rucco M, Petri G, Vaccarino F (2014) jHoles: a tool for understanding biological complex networks via clique weight rank persistent homology. Electron Notes Theor Comput Sci 306:5-18

Jyamiti research group (2014) SimpPers. http://web.cse.ohio-state.edu/~tamaldey/SimpPers/SimpPers-software/

Stanford University Computer Graphics Laboratory, The Stanford 3D scanning repository. https://graphics.stanford.edu/data/3Dscanrep

Kahle M (2011) Random geometric complexes. Discrete Comput Geom 45:553-573

Penrose M (2003) Random geometric graphs. Oxford University Press, Oxford

Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226-1229

Sporns O (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85:55-64

Los Alamos National Laboratory, HIV database. http://www.hiv.lanl.gov/content/index

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small world’ networks. Nature 393(6684):440-442

White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B, Biol Sci 314(1165):1-340

Davis TA, Hu Y (2011) The University of Florida sparse matrix collection. ACM Trans Math Softw 38:1-25. http://www.cise.ufl.edu/research/sparse/matrices

Volvis repository. http://volvis.org

Waugh AS, Pei L, Fowler JH, Mucha PJ, Porter MA (2012) Party polarization in congress: a network science approach. arXiv:0907.3509 . Data available at http://figshare.com/articles/Roll_Call_Votes_United_States_House_and_Senate/1590036

Poole KT (2016) Voteview. http://voteview.com

Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:Article ID 036104

Grayson DR, Stillman ME Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

T. S. Developers, Sage mathematics software. http://www.sagemath.org

The CGAL Project (2015) CGAL user and reference manual, 4.7 edn. CGAL Editorial Board