A rigidity result for global Mumford–Shah minimizers in dimension three
Tài liệu tham khảo
Adams, 2003, Sobolev Spaces, vol. 140
Alt, 1984, Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc., 282, 431, 10.1090/S0002-9947-1984-0732100-6
Ambrosio, 2000, Functions of Bounded Variation and Free Discontinuity Problems
Bonnet, 1996, On the regularity of edges in image segmentation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 13, 485, 10.1016/S0294-1449(16)30111-1
Brown, 1969, Flow near the apex of a plane delta wing, J. Inst. Math. Appl., 5, 206, 10.1093/imamat/5.2.206
Chambolle, 2013, The stress intensity factor for non-smooth fractures in antiplane elasticity, Calc. Var. Partial Differ. Equ., 47, 589, 10.1007/s00526-012-0529-9
Dauge, 1992, Neumann and mixed problems on curvilinear polyhedra, Integral Equ. Oper. Theory, 15, 227, 10.1007/BF01204238
David, 2005, Singular Sets of Minimizers for the Mumford–Shah Functional, vol. 233
David, 2010, C1+α-regularity for two-dimensional almost-minimal sets in Rn, J. Geom. Anal., 20, 837, 10.1007/s12220-010-9138-z
David, 2002, Monotonicity and separation for the Mumford–Shah problem, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 19, 631, 10.1016/S0294-1449(02)00097-5
Federer, 1969, Geometric Measure Theory, Band 153
Kozlov, 2001, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, vol. 85
Legendre, 1956, Écoulement subsonique transversal à un secteur angulaire plan, C. R. Hebd. Séances Acad. Sci., 243, 1716
Léger, 1999, Flatness and finiteness in the Mumford–Shah problem, J. Math. Pures Appl. (9), 78, 431, 10.1016/S0021-7824(99)00019-7
Lemenant, 2009, On the homogeneity of global minimizers for the Mumford–Shah functional when K is a smooth cone, Rend. Semin. Mat. Univ. Padova, 122, 129, 10.4171/RSMUP/122-9
Lemenant, 2011, Regularity of the singular set for Mumford–Shah minimizers in R3 near a minimal cone, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 10, 561
Lemenant, 2013, Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains, J. Funct. Anal., 264, 2097, 10.1016/j.jfa.2013.02.006
Merlet, 2007, Numerical study of a new global minimizer for the Mumford–Shah functional in R3, ESAIM Control Optim. Calc. Var., 13, 553, 10.1051/cocv:2007026
