A revised bending model of inflatable beam considering the shear effect in varying inner pressure

Changle Sun1, Shihao Ge1, Yong Nie2, Mingzhi Liu1, Xiaoxing Zhang1
1Department of Mechanical Engineering, Dalian Maritime University, Dalian, China
2China Harzone Industry CORP., LTD, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelrahman, A.A., Ashry, M., Alshorbagy, A.E., Abdallah, W.S.: On the mechanical behavior of two directional symmetrical functionally graded beams under moving load. Int. J. Mech. Mater. Des. 17, 563–586 (2021). https://doi.org/10.1007/s10999-021-09547-9

Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method. Mathematics. (2022). https://doi.org/10.3390/math10234429

Apedo, K.L., Ronel, S., Jacquelin, E., Massenzio, M., Bennani, A.: Theoretical analysis of inflatable beams made from orthotropic fabric. Thin-Wall. Struct. (2009). https://doi.org/10.1016/j.tws.2009.06.003

Apedo, K.L., Ronel, S., Jacquelin, E., Bennani, A., Massenzio, M.: Nonlinear finite element analysis of inflatable beams made from orthotropic woven fabric. Int. J. Solids Struct. (2010). https://doi.org/10.1016/j.ijsolstr.2010.03.030

Apedo, K.L., Ronel, S., Jacquelin, E., Tiem, S.: Free vibration analysis of inflatable beam made of orthotropic woven fabric. Thin-Wall. Struct. 78, 1–15 (2014)

Civalek, Ö., Uzun, B., Yaylı, M.Ö., Akgöz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. plus (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

Civalek, Ö., Uzun, B., Yaylı, M.Ö.: An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. (2022). https://doi.org/10.1007/s40314-022-01761-1

Clapp, J.D., Davids, W.G., Goupee, A.J., Young, A.C.: Experimental determination of inflatable, braided tube constitutive properties. Strain (2016). https://doi.org/10.1111/str.12175

Comer, R.L., Levy, S.: Deflections of an inflated circular-cylindrical cantilever beam. AIAA J. (1963). https://doi.org/10.2514/3.1873

Davids, W.G.: In-plane load-deflection behavior and buckling of pressurized fabric arches. J. Struct. Eng. (2009). https://doi.org/10.1061/(asce)st.1943-541x.0000068

Davids, W.G., Waugh, E., Vel, S.: Experimental and computational assessment of the bending behavior of inflatable drop-stitch fabric panels. Thin-Wall. Struct. (2021). https://doi.org/10.1016/j.tws.2021.108178

Elsabbagh, A.: Nonlinear finite element model for the analysis of axisymmetric inflatable beams. Thin-Wall. Struct. (2015). https://doi.org/10.1016/j.tws.2015.08.021

Fichter, W.B.: A theory for inflated thin-wall cylindrical beams. Computer and Structures. 3 (1966)

Ji, Q.X., Wang, C.G., Tan, H.F.: Multi-scale wrinkling analysis of the inflated beam under bending. Int. J. Mech. Sci. (2017). https://doi.org/10.1016/j.ijmecsci.2017.03.006

Kabche, J.P., Peterson, M.L., Davids, W.G.: Effect of inflation pressure on the constitutive response of coated woven fabrics used in airbeams. Compos. B Eng. (2011). https://doi.org/10.1016/j.compositesb.2010.11.007

Le Van, A., Wielgosz, C.: Finite element formulation for inflatable beams. Thin-Wall. Struct. (2007). https://doi.org/10.1016/j.tws.2007.01.015

Liu, Y.P., Wang, C.G., Tan, H.F., Wadee, M.K.: The interactive bending wrinkling behaviour of inflated beams. Proc. R. Soc. a: Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rspa.2016.0504

Main, J.A., Peterson, S.W., Strauss, A.M.: Load-deflection behavior of space-based inflatable fabric beams. J. Aerosp. Eng. (1994). https://doi.org/10.1061/(asce)0893-1321(1994)7:2(225)

Main, J.A., Peterson, S.W., Strauss, A.M.: Beam-type bending of space-based inflated membrane structures. J. Aerosp. Eng. (1995). https://doi.org/10.1061/(asce)0893-1321(1995)8:2(120)

Nguyen, Q.T., Thomas, J.C., Le Van, A.: Inflation and bending of an orthotropic inflatable beam. Thin-Wall. Struct. (2015). https://doi.org/10.1016/j.tws.2014.11.015

Numanoğlu, H.M., Ersoy, H., Akgöz, B., Civalek, Ö.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl Sci. (2022). https://doi.org/10.1002/mma.7942

Sun, C.L., Hu, H., Jiang, X.Q.: Inflatable slide-type marine rescue and evacuation system based on beam-truss structures. In: The 6th International Conference on Transportation Information and Safety (ICTIS), Wuhan, China (2021)

Thomas, J.-C., Bloch, A.: Nonlinear behaviour of an inflatable beam and limit states. Procedia Eng. 155, 398–406 (2016). https://doi.org/10.1016/j.proeng.2016.08.043

Thomas, J.-C., Le Van, A.: Deflections of pneumatic masts and columns. Archit. Eng. Des. Manag. 17, 299–315 (2021)

Thomas, J.C., Wielgosz, C.: Deflections of highly inflated fabric tubes. Thin-Wall. Struct. (2004). https://doi.org/10.1016/j.tws.2004.03.007

Thomas, J.C., Schoefs, F., Caprani, C., Rocher, B.: Reliability of inflatable structures: challenge and first results. Eur. J. Environ. Civ. Eng. (2020). https://doi.org/10.1080/19648189.2018.1474807

Veldman, S.L.: Wrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bending. Thin-Wall. Struct. 44, 211–215 (2006). https://doi.org/10.1016/j.tws.2006.01.003

Veldman, S.L., Bergsma, O.K., Beukers, A.: Bending of anisotropic inflated cylindrical beams. Thin-Wall. Struct. 43, 461–475 (2005a). https://doi.org/10.1016/j.tws.2004.07.015

Veldman, S.L., Bergsma, O.K., Beukers, A., Drechsler, K.: Bending and optimisation of an inflated braided beam. Thin-Wall. Struct. (2005b). https://doi.org/10.1016/j.tws.2005.06.004

Wang, C.G., Du, Z.Y., Tan, H.F.: Initial wrinkling and its evolution of membrane inflated cone in bending. Thin-Wall. Struct. (2012). https://doi.org/10.1016/j.tws.2012.05.007

Wei, J., Ding, H., Chai, Y., Eriksson, A., Tan, H.: Quasi-static folding and deployment of rigidizable inflatable beams. Int J Solids Struct. (2021). https://doi.org/10.1016/j.ijsolstr.2021.111063

Wielgosz, C.: Bending and buckling of inflatable beams: some new theoretical results. Thin-Wall. Struct. 43, 1166–1187 (2005)