A review on understanding explosions from methane–air mixture

Sazal Kundu1, Jafar Zanganeh1, Behdad Moghtaderi1
1Priority Research Centre for Frontier Energy Technologies & Utilisation, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering & Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

AFMFI, 1940, The associated factory Mutual Fire Insurance Companies, properties of flammable liquids, gases, and solids, Ind. Eng. Chem., 32, 880, 10.1021/ie50366a030

Ajrash, 2016, Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane, J. Loss Prev. Process Ind., 40, 207, 10.1016/j.jlp.2015.12.014

Ajrash, 2016, Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber, J. Loss Prev. Process Ind., 40, 317, 10.1016/j.jlp.2016.01.009

Andersson, 2003, Determination of the equivalence ratio during fire, comparison of techniques, Fire Saf. Sci., 7, 295, 10.3801/IAFSS.FSS.7-295

Ashman, 1961, The ignition of gases by electrically heated wires, Combust. Flame, 5, 113, 10.1016/0010-2180(61)90088-8

Baker, 2012

Bartknecht, 1993

Bozier, 2009, Detonability of binary H2/CH4–air mixtures

Brown, 2010

Bull, 1976, A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen, J. Phys. D Appl. Phys., 9, 1991, 10.1088/0022-3727/9/14/009

Bunev, 2013, The nature of the upper laminar flammability limit in methane-air mixtures at high pressures, Dokl. Phys. Chem., 197, 10.1134/S001250161307004X

Bunte, 1935, Ignition temperatures of gases, Gas- Wasserfachm., 20, 349

Carroll, E., “NFPA 67 ROP TC Letter Ballot (F2012) ” (NFPA website, https://www.nfpa.org/Assets/files/AboutTheCodes/67/67_F2012_ROP_ballot.pdf) (accessed: 15 10 15.).

Chan, 1983, Influence of confinement on flame acceleration due to repeated obstacles, Combust. Flame, 49, 27, 10.1016/0010-2180(83)90148-7

Chapman, 1899, On the rate of explosion in gases, Lond. Edinb. Dublin Philos. Mag. J. Sci., 47, 90, 10.1080/14786449908621243

Checkel, 1995, Flammability limits and burning velocities of ammonia/nitric oxide mixtures, J. Loss Prev. Process Ind., 8, 215, 10.1016/0950-4230(95)00027-X

Chen, 2011, Flow and flame visualization near the upper flammability limits of methane/air and propane/air mixtures at elevated pressures, J. Loss Prev. Process Ind., 24, 662, 10.1016/j.jlp.2011.05.012

Cheremisinoff, 2013

Ciccarelli, 2010, The role of shock–flame interactions on flame acceleration in an obstacle laden channel, Combust. Flame, 157, 2125, 10.1016/j.combustflame.2010.05.003

Claessen, 1986, Flammability characteristics of natural gases in air at elevated pressures and temperatures

Coward, 1934, Ignition temperatures of gases.“Concentric tube” experiments of (the late) Harold Baily Dixon, J. Chem. Soc. (Resum.), 1382, 10.1039/JR9340001382

De Rosa, 2004

Dhillon, 2010, Global mine accidents, Mine Saf. A Mod. Approach, 59

Dhillon, 2010

Dingsdag, 1993

Dorofeev, 1992

Dorofeev, 1994, Evaluation of the hydrogen explosion hazard, Nucl. Eng. Des., 148, 305, 10.1016/0029-5493(94)90116-3

Dorofeev, 1996, Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures, Combust. Flame, 104, 95, 10.1016/0010-2180(95)00113-1

Dorofeev, 2000, Effect of scale on the onset of detonations, Shock Waves, 10, 137, 10.1007/s001930050187

Eckhoff, 2005

Eckhoff, 1994, Possible sources of ignition of potential explosive gas atmospheres on offshore process installations, J. Loss Prev. Process Ind., 7, 281, 10.1016/0950-4230(94)80041-3

Fenstermaker, 1982, Study of autoignition for low pressure fuel—gas blends helps promote safety, Oil Gas J., 80, 126

Fitch, 1992

Freyer, 1893, On the ignition temperatures of explosive gas mixtures, Z. Phys. Chem., 11, 28

Frolov, 2008, Fast deflagration-to-detonation transition, Russ. J. Phys. Chem. B, 2, 442, 10.1134/S1990793108030184

Frolov, 2007, 261

Gamezo, 2008, Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing, Combust. Flame, 155, 302, 10.1016/j.combustflame.2008.06.004

Gamezo, 2012, Detonability of natural gas–air mixtures, Combust. Flame, 159, 870, 10.1016/j.combustflame.2011.08.009

Gavrikov, 1999, Detonation cell sizes from detailed chemical kinetic calculations

Gavrikov, 2000, A model for detonation cell size prediction from chemical kinetics, Combust. Flame, 120, 19, 10.1016/S0010-2180(99)00076-0

Gelfand, 1993, Thermal detonation in molten Sn-water suspension, Prog. Astronaut. Aeronaut., 154, 459

Gharagheizi, 2008, Quantitative structure− property relationship for prediction of the lower flammability limit of pure compounds, Energy Fuels, 22, 3037, 10.1021/ef800375b

Gieras, 2006, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature, J. Loss Prev. Process Ind., 19, 263, 10.1016/j.jlp.2005.05.004

Goethals, 1999, Experimental study of the flammability limits of toluene–air mixtures at elevated pressure and temperature, J. Hazard. Mater., 70, 93, 10.1016/S0304-3894(99)00164-8

Guirao, 1989

Hartman, 2012

Ibrahim, 2001, The effects of obstructions on overpressure resulting from premixed flame deflagration, J. Loss Prev. Process Ind., 14, 213, 10.1016/S0950-4230(00)00024-3

James, H., “Basic Phenomenology of Deflagration, DDT and Detonation” (UKELG website, http://ukelg.ps.ic.ac.uk/41HJ1.pdf) (accessed: 09 09 15.).

Johansen, 2009, Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel, Combust. Flame, 156, 405, 10.1016/j.combustflame.2008.07.010

Jouguet, 1905, Sur la propagation des réactions chimiques dans les gaz, J. Math. Pures Appl., 1, 347

Kessler, 2010, Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems, Combust. Flame, 157, 2063, 10.1016/j.combustflame.2010.04.011

Khanna, 2001

Kindracki, 2007, Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels, J. Loss Prev. Process Ind., 20, 551, 10.1016/j.jlp.2007.05.010

King, 1990

Kogarko, 1958, Detonation of methane-air mixtures and the detonation limits of hydrocarbon-air mixtures in a large-diameter pipe, Sov. Phy. Tech. Phys., 3, 1904

Kuchta, 1985, Investigation of fire and explosion accidents in the chemical, mining, and fuel-related industries, U. S. Dep. Inter. Bureau Mines, 680, 9

Kuznetsov, 2002, DDT in methane-air mixtures, Shock Waves, 12, 215, 10.1007/s00193-002-0155-0

Landau, 1987, vol. 6

Lee, 2003, 3, 33

Lee, 1985, 1663

Lee, 1984, Dynamic parameters of gaseous detonations, Annu. Rev. Fluid Mech., 16, 311, 10.1146/annurev.fl.16.010184.001523

Lee, 1984, High speed turbulent deflagrations and transition to detonation in H2-air mixtures, Combust. Flame, 56, 227, 10.1016/0010-2180(84)90039-7

Lee, 1984

Li, 2015, Premixed CH4-air flame structure characteristic and flow behavior induced by obstacle in an open duct, Adv. Mech. Eng., 7, 248279, 10.1155/2014/248279

Liberman, 2008

Lindstedt, 1989, Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures, Combust. Flame, 76, 169, 10.1016/0010-2180(89)90065-5

Lu, 2005, 825

Marinović, 1990

Markham, 1993

Matsui, 2002, Detonation propagation limits in homogeneous and heterogeneous systems, J. Phys. IV (Proc.). EDP Sci., 11

Moen, 1980, Flame acceleration due to turbulence produced by obstacles, Combust. Flame, 39, 21, 10.1016/0010-2180(80)90003-6

Moen, 1982, Pressure development due to turbulent flame propagation in large-scale methane-air explosions, Combust. Flame, 47, 31, 10.1016/0010-2180(82)90087-6

Naylor, 1931, The ignition of gases. Part VI. Ignition by a heated surface. Mixtures of methane with oxygen and nitrogen, argon, or helium, J. Chem. Soc., 2456, 10.1039/JR9310002456

Nicholls, 1979, 1223

Oran, 2015, Large-scale experiments and absolute detonability of methane/air mixtures, Combust. Sci. Technol., 187, 324, 10.1080/00102202.2014.976308

Organ, 1987, Bulli Mine disaster centenary, Illawarra Hist. Soc. Bull., 54

Pan, 2008, Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds, Chemom. Intell. Lab. Syst., 92, 169, 10.1016/j.chemolab.2008.03.002

Park, 2007, Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement, Combust. Flame, 150, 27, 10.1016/j.combustflame.2007.04.005

Parnarouskis, 1980, Vapor cloud explosion study

Peraldi, 1986, Criteria for transition to detonation in tubes, 21st symposium (International) on combustion, Combust. Inst., 1629

Perry, 1951, The production and stability of converging shock waves, J. Appl. Phys., 22, 878, 10.1063/1.1700067

Phylaktou, 1991, The acceleration of flame propagation in a tube by an obstacle, Combust. Flame, 85, 363, 10.1016/0010-2180(91)90140-7

Radford, 2014

Robinson, 1984, The auto-ignition temperature of methane, J. Hazard. Mater., 8, 199, 10.1016/0304-3894(84)85001-3

Salzano, 2002, Numerical simulation of turbulent gas flames in tubes, J. Hazard. Mater., 95, 233, 10.1016/S0304-3894(02)00161-9

Shchelkin, 1964

Sorin, 2006, Optimization of the deflagration to detonation transition: reduction of length and time of transition, Shock Wasves, 15, 137, 10.1007/s00193-006-0007-4

Suzuki, 2005, Propagation of avalanches in Mn 12-Acetate: magnetic deflagration, Phys. Rev. Lett., 95, 147201, 10.1103/PhysRevLett.95.147201

Taffenel, 1913, Combustion of gaseous mixtures, and kindling temperatures, Comptes Rendus, 157, 469

Takita, 1996, On detonation behavior of mixed fuels, Shock Waves, 6, 61, 10.1007/BF02515188

Thakur, 2006, Coal seam degasification

Townend, 1936, The influence of pressure on the spontaneous ignition of inflammable gas-air mixtures. IV. Methane-, ethane-, and propane-air mixtures, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 154, 95, 10.1098/rspa.1936.0039

Tsuboi, 2009, 439

Tu, 2011

Vanderstraeten, 1997, Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures, J. Hazard. Mater., 56, 237, 10.1016/S0304-3894(97)00045-9

Wolański, 1981, 1651

Yi, 2011, Effect of meshy obstacle on methane gas explosion, Proc. Eng., 26, 70, 10.1016/j.proeng.2011.11.2141

Zel'dovich, 1987, Detonation propagation in a rough tube taking account of deceleration and heat transfer, Combust. Explos. Shock Waves, 23, 342, 10.1007/BF00748797

Zhang, 2014, Explosion and flame characteristics of methane/air mixtures in a large-scale vessel, Process Saf. Prog., 33, 362, 10.1002/prs.11670

Zhang, 2011, Effect of scale on the explosion of methane in air and its shockwave, J. Loss Prev. Process Ind., 24, 43, 10.1016/j.jlp.2010.08.011

Zhang, 2011, Effect of scale on flame speeds of methane–air, J. Loss Prev. Process Ind., 24, 705, 10.1016/j.jlp.2011.06.021

Zhiming, 2010, Numerical study on shock wave propagation with obstacles during methane explosion, Appl. Mech. Mater. Trans Tech Publ., 114

Zipf, 2013, Methane–air detonation experiments at NIOSH Lake Lynn Laboratory, J. Loss Prev. Process Ind., 26, 295, 10.1016/j.jlp.2011.05.003

Zipf, 2014, Deflagration-to-detonation transition in natural gas–air mixtures, Combust. Flame, 161, 2165, 10.1016/j.combustflame.2014.02.002