A review on thermoelectric renewable energy: Principle parameters that affect their performance

Renewable and Sustainable Energy Reviews - Tập 30 - Trang 337-355 - 2014
Mohamed Hamid Elsheikh1,2, Dhafer Abdulameer Shnawah1, Mohd Faizul Mohd Sabri1, Suhana Binti Mohd Said3, Masjuki Haji Hassan1, Mohamed Bashir Ali Bashir1, Mahazani Mohamad3
1Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Mechanical Engineering, University of Bahri, 13104 Khartoum, Sudan
3Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Tài liệu tham khảo

Xi, 2007, Development and applications of solar-based thermoelectric technologies, Renew Sustain Energy Rev, 11, 923, 10.1016/j.rser.2005.06.008 Omer, 2008, Focus on low carbon technologies: the positive solution, Renew Sustain Energy Rev, 12, 2331, 10.1016/j.rser.2007.04.015 Thirugnanasambandam, 2010, A review of solar thermal technologies, Renew Sustain Energy Rev, 14, 312, 10.1016/j.rser.2009.07.014 Afshar, 2012, A review of thermodynamics and heat transfer in solar refrigeration system, Renew Sustain Energy Rev, 16, 5639, 10.1016/j.rser.2012.05.016 Kalkan, 2012, Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning, Renew Sustain Energy Rev, 16, 6352, 10.1016/j.rser.2012.07.014 Fthenakis, 2010, Life-cycle uses of water in U.S. electricity generation, Renew Sustain Energy Rev, 14, 2039, 10.1016/j.rser.2010.03.008 Liu, 2010, Active low-grade energy recovery potential for building energy conservation, Renew Sustain Energy Rev, 14, 2736, 10.1016/j.rser.2010.06.005 Wang, 2011, A review of researches on thermal exhaust heat recovery with Rankine cycle, Renew Sustain Energy Rev, 15, 2862, 10.1016/j.rser.2011.03.015 Saidur, 2012, Technologies to recover exhaust heat from internal combustion engines, Renew Sustain Energy Rev, 16, 5649, 10.1016/j.rser.2012.05.018 Vélez, 2012, A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation, Renew Sustain Energy Rev, 16, 4175, 10.1016/j.rser.2012.03.022 Martín-González, 2013, Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field, Renew Sustain Energy Rev, 24, 288, 10.1016/j.rser.2013.03.008 Shu, 2013, A review of waste heat recovery on two-stroke IC engine aboard ships, Renew Sustain Energy Rev, 19, 385, 10.1016/j.rser.2012.11.034 Riffat, 2003, Thermoelectrics: a review of present and potential applications, Appl Therm Eng, 23, 913, 10.1016/S1359-4311(03)00012-7 Dai, 2011, Liquid metal based thermoelectric generation system for waste heat recovery, Renew Energy, 36, 3530, 10.1016/j.renene.2011.06.012 Tie, 2013, A review of energy sources and energy management system in electric vehicles, Renew Sustain Energy Rev, 20, 82, 10.1016/j.rser.2012.11.077 Ullah, 2013, A review of solar thermal refrigeration and cooling methods, Renew Sustain Energy Rev, 24, 499, 10.1016/j.rser.2013.03.024 Tsubota, 2008, Thermoelectric properties of Sn1−x−yTiySbxO2 ceramics, J Alloys Compd, 463, 288, 10.1016/j.jallcom.2007.09.001 Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater Sci Eng R: Rep, 67, 19, 10.1016/j.mser.2009.10.001 Gao, 2006, Rational design of high-efficiency thermoelectric materials with low band gap conductive polymers, Comput Mater Sci, 36, 49, 10.1016/j.commatsci.2004.12.080 Zhan, 2006, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scr Mater, 54, 77, 10.1016/j.scriptamat.2005.09.003 Snyder, 2008, Complex thermoelectric materials, Nat Mater, 7, 105, 10.1038/nmat2090 Cai, 2004, The effect of titanium diboride addition on the thermoelectric properties of β-FeSi2 semiconductors, Solid State Commun, 131, 325, 10.1016/j.ssc.2004.04.028 Zide, 2006, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As∕In0.53Ga0.28Al0.19As superlattices, Phys Rev B, 74 Bian, 2006, Enhanced solid-state thermionic emission in nonplanar heterostructures, Appl Phys Lett, 88, 012102, 10.1063/1.2159574 Zheng, 2008, Recent advances on thermoelectric materials, Front Phys China, 3, 269, 10.1007/s11467-008-0028-9 Hochbaum, 2008, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451, 163, 10.1038/nature06381 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012 Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886 Sootsman, 2009, New and old concepts in thermoelectric materials, Angew Chem Int Ed, 48, 8616, 10.1002/anie.200900598 Nolas, 1999, KUTTERUDITES: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications, Annu Rev Mater Sci, 29, 89, 10.1146/annurev.matsci.29.1.89 HERWAARDEN, 1986, Sensors based on the seebeck effect, Sensors Actuat A: Phys, 10, 321, 10.1016/0250-6874(86)80053-1 Tritt, 2006, Thermoelectric materials, phenomena, and applications: a bird's eye view, MRS Bull, 31, 188, 10.1557/mrs2006.44 Pereira Gonçalves, 2010, Conducting glasses as new potential thermoelectric materials: the Cu–Ge–Te case, J Mater Chem, 20, 1516, 10.1039/B908579C Dmitriev, 2010, Current trends in the physics of thermoelectric materials, Physics – Uspekhi, 53, 789, 10.3367/UFNe.0180.201008b.0821 Wan, 2010, Low-thermal-conductivity (MS)1+x(TiS2)2 (M=Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials, Materials, 3, 2606, 10.3390/ma3042606 Bulusu, 2008, Review of electronic transport models for thermoelectric materials, Superlattices Microstruct., 44, 1, 10.1016/j.spmi.2008.02.008 Ma, 2008, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks, Nano Lett., 8, 2580, 10.1021/nl8009928 Gonçalves, 2012, Semiconducting glasses: a new class of thermoelectric materials?, J. Solid State Chem., 193, 26, 10.1016/j.jssc.2012.03.031 Joshi, 2008, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett., 8, 4670, 10.1021/nl8026795 Cadoff, 1960 Das, 1998, Thickness and temperature effects on thermoelectric power and electrical resistivity of (Bi0.25Sb0.75)2Te3 thin films, Mater Chem Phys, 57, 57, 10.1016/S0254-0584(98)00203-X Kowalczyk, 2008, Specific heat, electrical resistivity and thermoelectric power of YbNi4Si, Mater Res Bull, 43, 185, 10.1016/j.materresbull.2007.02.041 Wang, 2008, Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n=1, 2) ceramics, Ceram Int, 34, 849, 10.1016/j.ceramint.2007.09.034 Watanabe, 2012, Effects of metal substitution on the electric and thermoelectric properties in (Ni1−xMx)Mn2O4 (M=Zn and Mg), Thermochim Acta, 532, 56, 10.1016/j.tca.2011.12.018 Iversen, 2000, Why are clathrates good candidates for thermoelectric materials?, J Solid State Chem, 149, 455, 10.1006/jssc.1999.8534 Kleinke, 2010, New bulk materials for thermoelectric power generation: clathrates and complex antimonides†, Chem Mater, 22, 604, 10.1021/cm901591d Christensen, 2006, The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering, Physica B: Condensed Matter, 385-386, 505, 10.1016/j.physb.2006.05.232 Anno, 2012, Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46−x (nominal x=14–18) clathrates prepared by combining arc melting and spark plasma sintering methods, J Solid State Chem, 193, 94, 10.1016/j.jssc.2012.03.069 Kim, 2003, Effects of doping on the high-temperature thermoelectric properties of IrSb3 skutterudite compounds, J Electron Mater, 32, 1141, 10.1007/s11664-003-0003-8 Vaqueiro, 2006, Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5, J Solid State Chem, 179, 2047, 10.1016/j.jssc.2006.04.004 Kim, 2007, Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting, J Alloys Compd, 442, 351, 10.1016/j.jallcom.2006.08.368 Ur, 2007, Thermoelectric properties of Fe-doped CoSb3 prepared by mechanical alloying and vacuum hot pressing, J Alloys Compd, 442, 358, 10.1016/j.jallcom.2006.08.369 Alboni, 2007, Synthesis and thermoelectric properties of nano-engineered CoSb3 skutterudite materials, J Electron Mater, 36, 711, 10.1007/s11664-007-0160-2 Matsuoka, 2006, Magnetic and thermoelectric properties of BayFe4−xCoxSb12, Physica B: Condensed Matter, 383, 132, 10.1016/j.physb.2006.03.078 Park, 2010, Thermoelectric properties of Ca-filled CoSb3-based skutterudites synthesized by mechanical alloying, J Electron Mater, 40, 493, 10.1007/s11664-010-1400-4 Kim, 2004, Effect of partial La filling on high-temperature thermoelectric properties of IrSb3-based skutterudite compounds, J Electron Mater, 33, 1156, 10.1007/s11664-004-0117-7 Alleno, 2006, Double filling in skutterudites: a promising path to improved thermoelectric properties, Physica B: Condensed Matter, 383, 103, 10.1016/j.physb.2006.03.068 Sklad, 2010, Examination of CeFe4Sb12 upon exposure to air: is this material appropriate for use in terrestrial, high-temperature thermoelectric devices?, 505, L6 Rogl, 2011, A new generation of p-type didymium skutterudites with high ZT, Intermetallics, 19, 546, 10.1016/j.intermet.2010.12.001 Grytsiv, 2003, Novel thermoelectric skutterudites SnyNi4Sb12−xSnx, Physica B: Condensed Matter, 328, 71, 10.1016/S0921-4526(02)01812-4 Jung, 2008, Thermoelectric properties of InzCo4Sb12−yTey skutterudites, Mater Chem Phys, 108, 431, 10.1016/j.matchemphys.2007.10.021 Lu, 2010, Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite, J Alloys Compd, 505, 255, 10.1016/j.jallcom.2010.06.040 Liu, 2006, The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA–SPS, Mater Chem Phys, 96, 371, 10.1016/j.matchemphys.2005.07.068 Ravot, 2001, Anomalous physical properties of cerium–lanthanum filled skutterudites, J Alloys Compd, 323–324, 389, 10.1016/S0925-8388(01)01071-4 Bai, 2009, Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12, Acta Mater, 57, 3135, 10.1016/j.actamat.2009.03.018 Ballikaya, 2012, High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds, J Solid State Chem, 193, 31, 10.1016/j.jssc.2012.03.029 Chakoumakos, 2006, Skutterudites: their structural response to filling, J Alloys Compd, 407, 87, 10.1016/j.jallcom.2005.06.073 Deng, 2011, The thermoelectric properties of Co4Sb12-xTex synthesized at different pressure, Mater Lett, 65, 1057, 10.1016/j.matlet.2010.12.052 Wojciechowski, 2003, Thermoelectric properties and electronic structure of CoSb3 doped with Se and Te, J Alloys Compd, 361, 19, 10.1016/S0925-8388(03)00411-0 Kitagawa, 2005, Temperature dependence of thermoelectric properties of Ni-doped CoSb3, J Phys Chem Solids, 66, 1635, 10.1016/j.jpcs.2005.05.077 Peng, 2004, Preparation and characterization of Fe substituted CoSb3 skutterudite by mechanical alloying and annealing, J Alloys Compd, 381, 313, 10.1016/j.jallcom.2004.03.104 Yu, 2013, Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials, Scr Mater, 68, 643, 10.1016/j.scriptamat.2012.12.029 Shi, 2009, Thermoelectric properties of n-type multiple-filled Skutterudites, J Electron Mater, 38, 930, 10.1007/s11664-008-0650-x Shi, 2011, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J Am Chem Soc, 133, 7837, 10.1021/ja111199y Zou, 2013, Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium, J Solid State Chem, 198, 125, 10.1016/j.jssc.2012.09.043 Wang, 2010, Structural and thermoelectric properties of HfNiSn half-Heusler thin films, Thin Solid Films, 518, 5901, 10.1016/j.tsf.2010.05.080 Kawaharada, 2004, High temperature thermoelectric properties of CoNb1−xHfxSn1−ySby half-Heusler compounds, J Alloys Compd, 377, 312, 10.1016/j.jallcom.2004.02.017 Shutoh, 2005, Thermoelectric properties of the TiX(Zr0.5Hf0.5)1−xNiSn half-Heusler compounds, J Alloys Compd, 389, 204, 10.1016/j.jallcom.2004.05.078 Lee, 2010, High-temperature thermoelectric properties of Ti0.5(ZrHf)0.5−xNbxNi0.9Pd0.1Sn0.98Sb0.02 half-Heusler alloys, J Alloys Compd, 504, 192, 10.1016/j.jallcom.2010.05.086 Fu, 2013, Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering, Intermetallics, 32, 39, 10.1016/j.intermet.2012.07.037 Maji, 2010, Effects of Rh on the thermoelectric performance of the p-type Zr0.5Hf0.5Co1−xRhxSb0.99Sn0.01 half-Heusler alloys, J Solid State Chem, 183, 1120, 10.1016/j.jssc.2010.03.023 Nylén, 2007, Effect of metal doping on the low-temperature structural behavior of thermoelectric β-Zn4Sb3, J Solid State Chem, 180, 2603, 10.1016/j.jssc.2007.07.013 Carreon, 2013, On the exploitation of thermoelectric coupling for characterization of elliptical inclusions in metals, Expl Therm Fluid Sci, 44, 673, 10.1016/j.expthermflusci.2012.09.007 Ferreira, 2012, New method to improve the grain alignment and performance of thermoelectric ceramics, Mater Lett, 83, 144, 10.1016/j.matlet.2012.05.131 Liu, 2012, Synthesis and thermoelectric performance of Li-doped NiO ceramics, Ceram Int, 38, 5023, 10.1016/j.ceramint.2012.02.099 Wang, 2010, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Mater Res Bull, 45, 809, 10.1016/j.materresbull.2010.03.018 Constantinescu, 2013, Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics, Scr Mater, 68, 75, 10.1016/j.scriptamat.2012.09.014 Kenfaui, 2010, Texture mechanical and thermoelectric properties of Ca3Co4O9 ceramics, J Alloys Compd, 490, 472, 10.1016/j.jallcom.2009.10.048 Li, 2011, Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics, Ceram Int, 37, 105, 10.1016/j.ceramint.2010.08.024 Liu, 2010, Thermoelectric properties of Sr1−xNdxTiO3 ceramics, J Alloys Compd, 492, L54, 10.1016/j.jallcom.2009.11.165 Tajima, 2001, Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method, Mater Sci Eng, B86, 20, 10.1016/S0921-5107(01)00633-X Wang, 2012, Synthesis and post-annealing effects on the transport properties of thermoelectric oxide (ZnO)mIn2O3 ceramics, Ceram Int, 38, 1167, 10.1016/j.ceramint.2011.06.068 Yasukawa, 2006, Preparation of dense BaPbO3-based ceramics by a coprecipitation and their thermoelectric properties, J Alloys Compd, 426, 420, 10.1016/j.jallcom.2006.03.098 Yasukawa, 2010, High-temperature thermoelectric properties of La-doped BaSnO3 ceramics, Mater Sci Eng B, 173, 29, 10.1016/j.mseb.2009.10.002 Wang, 2010, Enhanced thermoelectric properties of Nb-doped SrTiO3 polycrystalline ceramic by titanate nanotube addition, J Alloys Compd, 506, 293, 10.1016/j.jallcom.2010.06.195 Delorme, 2011, Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 Ceramics, J Alloys Compd, 509, 2311, 10.1016/j.jallcom.2010.10.209 Noudem, 2008, Thermoelectric ceramics for generators, J Eur Ceram Soc, 28, 41, 10.1016/j.jeurceramsoc.2007.05.012 Tsai, 2011, Widely variable Seebeck coefficient and enhanced thermoelectric power of PEDOT:PSS films by blending thermal decomposable ammonium formate, Org Electron, 12, 2159, 10.1016/j.orgel.2011.09.004 Choi, 2011, Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites, Org Electron, 12, 2120, 10.1016/j.orgel.2011.08.025 Yue, 2012, Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review, Synth Met, 162, 912, 10.1016/j.synthmet.2012.04.005 Chatterjee, 2009, Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite — a novel thermoelectric material, Mater Charact, 60, 1597, 10.1016/j.matchar.2009.09.012 Du, 2012, Research progress on polymer–inorganic thermoelectric nanocomposite materials, Prog Polym Sci, 37, 820, 10.1016/j.progpolymsci.2011.11.003 Zhang, 2009, Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1−xCdx)3Sb2 doped with Ag, J Alloys Compd, 484, 498, 10.1016/j.jallcom.2009.04.130 Chen, 2005, Performance optimization of a two-stage semiconductor thermoelectric-generator, Appl Energy, 82, 300, 10.1016/j.apenergy.2004.12.003 Dughaish, 2005, Lead telluride as a thermoelectric material for thermoelectric power generation, Physica B, 322, 205, 10.1016/S0921-4526(02)01187-0 Majumdar, 2004, Thermoelectricity in semiconductor nanostructures, Mater Sci, 303, 777 Alam, 2013, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, 2, 190, 10.1016/j.nanoen.2012.10.005 Tani J-i, 2005, Thermoelectric properties of Bi-doped Mg2Si semiconductors, Physica B: Condensed Matter, 364, 218, 10.1016/j.physb.2005.04.017 Ozpineci, 2003 Omar, 2006, The optical energy gap dependence on both carrier concentration and intrinsic energy gap in n-type semiconductors, Mater Sci Semiconduct Process, 9, 164, 10.1016/j.mssp.2006.01.045 Gao, 2012, Thermoelectric properties of Cu and Sb Co-doped Ga-Te based semiconductor with wide band gap, Proc Eng, 27, 156, 10.1016/j.proeng.2011.12.438 Hummel, 2011 Nag, 1995, Direct band-gap energy of semiconductors, Infrared Phys Technol, 36, 831, 10.1016/1350-4495(95)00023-R Zhang, 2011, First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide, J Alloys Compd, 509, 542, 10.1016/j.jallcom.2010.09.102 Ramdas, 2005, Electronic band gaps of semiconductors as influenced by their isotopic composition, Solid State Commun, 133, 709, 10.1016/j.ssc.2004.12.038 Tan, 2012, Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration, J Alloys Compd, 513, 328, 10.1016/j.jallcom.2011.10.042 Wang, 2011, Optimizing thermoelectric performance of Cd-doped β-Zn4Sb3 through self-adjusting carrier concentration, Intermetallics, 19, 1823, 10.1016/j.intermet.2011.07.020 Delaizir, 2012, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties, Mater Res Bull, 47, 1954, 10.1016/j.materresbull.2012.04.019 Drasar, 2012, Thermoelectric properties and nonstoichiometry of GaGeTe, J Solid State Chem, 193, 42, 10.1016/j.jssc.2012.03.030 Roudebush, 2011, Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8−ySryAl14Si32 (0.6≤y≤1.3) prepared by aluminum flux, J Solid State Chem, 184, 1176, 10.1016/j.jssc.2011.02.027 Mikhnovich, 2001, Scattering of charge carriers in semiconductors: models and their criteria, Physica, B 308–310, 1023, 10.1016/S0921-4526(01)00904-8 Karl, 2003, Charge carrier transport in organic semiconductors, Synth Met, 133–134, 649, 10.1016/S0379-6779(02)00398-3 Uberuaga, 2002, Theoretical studies of self-diffusion and dopant clustering in semiconductors, Phys stat sol, 233, 24, 10.1002/1521-3951(200209)233:1<24::AID-PSSB24>3.0.CO;2-5 Bracht, 2005, Advanced diffusion studies with isotopically controlled materials, Solid State Commun, 133, 727, 10.1016/j.ssc.2004.12.024 Cui, 2002, Preparation, thermoelectric properties and interface analysis of n-type graded material FeSi2/Bi2Te3, Mater Sci Eng, B94, 223, 10.1016/S0921-5107(02)00092-2 Nakagawa, 2005, Control of point defects and grain boundaries in advanced materials, Nucl Inst Meth Phys Res Sect B: Beam Inter Mater Atoms, 232, 343, 10.1016/j.nimb.2005.03.070 Wanwan, 2006, Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe, J Crystal Growth, 292, 53, 10.1016/j.jcrysgro.2006.03.058 Bae, 2011, Diffusion at interfaces of micro thermoelectric devices, Curr Appl Phys, 11, S40, 10.1016/j.cap.2011.05.036 Xu, 2012, Effects of the oxygen partial pressure during deposition on the material characteristics and magnetic properties of BaM thin films, J Alloys Compd, 538, 11, 10.1016/j.jallcom.2012.05.101 Terasaki, 2003, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Physica B: Condensed Matter, 328, 63, 10.1016/S0921-4526(02)01810-0 Ito, 2008, Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4, J Alloys Compd, 450, 494, 10.1016/j.jallcom.2006.11.032 Zhou, 2011, Effects of annealing atmosphere on thermoelectric signals from ZnO films, Thin Solid Films, 519, 3026, 10.1016/j.tsf.2010.12.011 Li, 2011, Low temperature (<100°C) deposited P-type cuprous oxide thin films: importance of controlled oxygen and deposition energy, Thin Solid Films, 520, 1278, 10.1016/j.tsf.2011.04.192 Liu, 2007, Processing method dependency of thermoelectric properties of Bi85Sb15 alloys in low temperature, Cryogenics, 47, 56, 10.1016/j.cryogenics.2006.09.007 Prokhorov, 2011, Detection of internal cracks and ultrasound characterization of nanostructured Bi2Te3-based thermoelectrics via acoustic microscopy, Ultrasonics, 51, 715, 10.1016/j.ultras.2011.02.005 Moon, 2010, Microstructure and thermoelectric properties of p-type Bi2Te3–Sb2Te3 alloys produced by rapid solidification and spark plasma sintering, J Alloys Compd, 504, S504, 10.1016/j.jallcom.2010.03.114 Kim, 2007, Microstructure and thermoelectric properties of n- and p-type Bi2Te3 alloys by rapid solidification processes, J Alloys Compd, 437, 225, 10.1016/j.jallcom.2006.07.090 Ren, 2008, Hardness as a function of composition for n-type LAST thermoelectric material, J Alloys Compd, 455, 340, 10.1016/j.jallcom.2007.01.086 Zhou, 2012, Thermal stability and elastic properties of Mg2X (X=Si, Ge, Sn, Pb) phases from first-principle calculations, Comput Mater Sci, 51, 409, 10.1016/j.commatsci.2011.07.012 Fan, 2012, Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials, J Mech Behav Biomed Mater, 8, 99, 10.1016/j.jmbbm.2011.12.014 Hong, 2003, Thermoelectric properties of newly fabricated n-type 95%Bi2Te2–5%Bi2Se3 alloys by gas atomizing and extrusion process, Mater Sci Eng B, 98, 232, 10.1016/S0921-5107(03)00042-4 Zhao, 2009, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, J Alloys Compd, 477, 425, 10.1016/j.jallcom.2008.10.037 Zhao, 2012, Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element, J Alloys Compd, 517, 198, 10.1016/j.jallcom.2011.12.130 Zhu, 2010, Ultra-strength materials, Prog Mater Sci, 55, 710, 10.1016/j.pmatsci.2010.04.001 Jung D-y, 2010, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M=Ti, Zr, Hf), J Alloys Compd, 489, 328, 10.1016/j.jallcom.2009.09.139 Huang, 2006, Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect, Sens Actuat A: Phys, 126, 122, 10.1016/j.sna.2005.10.006 Al-Merbati, 2013, Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance, Appl Therm Eng, 50, 683, 10.1016/j.applthermaleng.2012.07.021 Asenath-Smith, 2011, Structural behavior and thermoelectric properties of the brownmillerite system Ca2(ZnxFe2−x)O5, J Solid State Chem, 184, 2167, 10.1016/j.jssc.2011.06.009 Tachibana, 2012, An estimation of thermal stress of thermoelectric devices in the temperature cycling test, Proc Eng, 27, 177, 10.1016/j.proeng.2011.12.441 Rogl, 2012, Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12, J Alloys Compd, 537, 183, 10.1016/j.jallcom.2012.05.011 Ahiska, 2012, A new method and computer-controlled system for measuring the time constant of real thermoelectric modules, Energy Convers Manage, 53, 314, 10.1016/j.enconman.2011.09.003 Chein, 2004, Thermoelectric cooler application in electronic cooling, Appl Therm Eng, 24, 2207, 10.1016/j.applthermaleng.2004.03.001 Putra, 2011, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment, Exp Therm Fluid Sci, 35, 1274, 10.1016/j.expthermflusci.2011.04.015 Zhang, 2010, Analysis of thermoelectric cooler performance for high power electronic packages, Appl Therm Eng, 30, 561, 10.1016/j.applthermaleng.2009.10.020 PrezAparicio, 2012, Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers, Int J Heat Mass Transf, 55, 1363, 10.1016/j.ijheatmasstransfer.2011.08.031 Chang, 2009, Thermoelectric air-cooling module for electronic devices, Appl Therm Eng, 29, 2731, 10.1016/j.applthermaleng.2009.01.004 Huang, 2010, Thermoelectric water-cooling device applied to electronic equipment, Int Commun Heat Mass Transf, 37, 140, 10.1016/j.icheatmasstransfer.2009.08.012 Zhou, 2012, Design optimization of thermoelectric cooling systems for applications in electronic devices, Int J Refrig, 35, 1139, 10.1016/j.ijrefrig.2011.12.003 Wang, 2013, Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis, Int J Heat Mass Transf, 63, 361, 10.1016/j.ijheatmasstransfer.2013.03.078 Abdul-Wahab, 2009, Design and experimental investigation of portable solar thermoelectric refrigerator, Renew Energy, 34, 30, 10.1016/j.renene.2008.04.026 Dai, 2003, Experimental investigation on a thermoelectric refrigerator driven by solar cells, Renew Energy, 28, 949, 10.1016/S0960-1481(02)00055-1 Chen, 2012, Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system, Cryogenics, 52, 58, 10.1016/j.cryogenics.2011.10.007 Luo, 2013, Low temperature thermoelectric properties of melt spun Bi85Sb15 alloys, Intermetallics, 32, 96, 10.1016/j.intermet.2012.08.007 Meng, 2011, Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger, Acta Phys Pol A, 120, 397, 10.12693/APhysPolA.120.397 Available at www.tetech.com; 2010. Shen, 2013, Investigation of a novel thermoelectric radiant air-conditioning system, Energy Build, 59, 123, 10.1016/j.enbuild.2012.12.041 Riffat, 2004, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners, Appl Therm Eng, 24, 1979, 10.1016/j.applthermaleng.2004.02.010 Cherkez, 2012, Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter, Appl Therm Eng, 38, 7, 10.1016/j.applthermaleng.2012.01.012 Niu, 2009, Experimental study on low-temperature waste heat thermoelectric generator, J Power Sources, 188, 621, 10.1016/j.jpowsour.2008.12.067 Vullers, 2009, Micropower energy harvesting, Solid-State Electron, 53, 684, 10.1016/j.sse.2008.12.011 Snyder G.J. Small thermoelectric generators. Interface: the electrochemical society, Fall; 2008. p. 54–6. Group A-hW, 2010 Yu, 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Convers Manage, 50, 1506, 10.1016/j.enconman.2009.02.015 Hsu, 2011, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Appl Energy, 88, 1291, 10.1016/j.apenergy.2010.10.005 Karri, 2011, Exhaust energy conversion by thermoelectric generator: two case studies, Energy Convers Manage, 52, 1596, 10.1016/j.enconman.2010.10.013 Gou, 2013, A dynamic model for thermoelectric generator applied in waste heat recovery, Energy, 52, 201, 10.1016/j.energy.2013.01.040 Yee, 2013, $ per W metrics for thermoelectric power generation: beyond ZT, Energy Environ Sci, 6, 2561, 10.1039/C3EE41504J Sano S, Mizukami H, Kaibe H. Development of high-efficiency thermoelectric power generation system. KOMAT'SU; 2003. Omer, 1998, Design optimization of thermoelectric devices for solar power generation, Solar Energy Mater Solar Cells, 53, 67, 10.1016/S0927-0248(98)00008-7 Omer, 2000, Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation, Energy Convers Manage, 41, 737, 10.1016/S0196-8904(99)00134-X Suter, 2010, Heat transfer and geometrical analysis of thermoelectric converters driven by concentrated solar radiation, Materials, 3, 2735, 10.3390/ma3042735 He, 2012, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renew Energy, 37, 142, 10.1016/j.renene.2011.06.002 Kraemer, 2012, Modeling and optimization of solar thermoelectric generators for terrestrial applications, Solar Energy, 86, 1338, 10.1016/j.solener.2012.01.025 Xiao, 2012, Thermal design and management for performance optimization of solar thermoelectric generator, Appl Energy, 93, 33, 10.1016/j.apenergy.2011.06.006 Deng, 2013, Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design, Solar Energy, 88, 182, 10.1016/j.solener.2012.12.002 Miljkovic, 2011, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons, Solar Energy, 85, 2843, 10.1016/j.solener.2011.08.021 Faïd, 1998, A comparative study of local sensors of power ultrasound effects electrochemical, thermoelectrical and chemical probes, Ultrason Sonochem, 5, 63, 10.1016/S1350-4177(98)00008-X Ahamat, 2011, Timewise temperature control with heat metering using a thermoelectric module, Appl Thermal Eng, 31, 1421, 10.1016/j.applthermaleng.2011.01.002 Vancauwenberghe, 1996, Microsensor for the preventive detection of water condensation: operating principle and interface electronics, Sens Actuat A, 53, 304, 10.1016/0924-4247(96)01172-7 Sawaguchi, 2005, Effect of humidity on the sensing property of thermoelectric hydrogen sensor, Sens Actuat B: Chem, 108, 461, 10.1016/j.snb.2004.12.078 Stachowiak, 1998, A thermoelectric sensor for fluid flow measurement. principles, calibration and solution for self temperature compensation, Flow Meas Instrum, 9, 135, 10.1016/S0955-5986(98)00025-9 Jacobs, 2009, Combination of a novel perforated thermoelectric flow and impedimetric sensor for monitoring chemical conversion in micro fluidic channels, Proc Chem, 1, 1127, 10.1016/j.proche.2009.07.281 Jacobs, 2009, Novel pressure stable thermoelectric flow sensor in non-steady state operation mode for inline process analysis in micro reactors, Proc Chem, 1, 148, 10.1016/j.proche.2009.07.037 Mülller, 1996, A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor, Sens Actuat A, 54, 601, 10.1016/S0924-4247(97)80022-2 Escriba, 2005, Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors, Sens Actuat A: Phys, 120, 267, 10.1016/j.sna.2004.11.027 Hirota, 2007, 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber, Sens Actuat A: Phys, 135, 146, 10.1016/j.sna.2006.06.058 Ploteau, 2007, Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces, Appl Therm Eng, 27, 674, 10.1016/j.applthermaleng.2006.05.010 Ihring, 2011, Surface-micromachined thermoelectric infrared focal-plane array with high detectivity for room temperature operation, Microelectron Eng, 88, 2267, 10.1016/j.mee.2011.02.075 Sion, 2012, Unpackaged infrared thermoelectric microsensor realised on suspended membrane by silicon technology, Sens Actuat A: Phys, 175, 78, 10.1016/j.sna.2011.12.051 Kopparthy, 2012, Thermoelectric microfluidic sensor for bio-chemical applications, Sens Actuat B: Chem, 166-167, 608, 10.1016/j.snb.2012.03.021 Kozlov, 1999, Optimization of thin-film thermoelectric radiation sensor with comb thermoelectric transducer, Sens Actuat, 75, 139, 10.1016/S0924-4247(99)00015-1 Kozlov, 2000, Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer, Sens Actuat, 84, 259, 10.1016/S0924-4247(00)00358-7 El-Genk, 2005, Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems, Energy Convers Manage, 46, 1083, 10.1016/j.enconman.2004.06.019 O’Brien, 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, J Nucl Mater, 377, 506, 10.1016/j.jnucmat.2008.04.009 El-Genk, 2003, Efficient segmented thermoelectric unicouples for space power applications, Energy Convers Manage, 44, 1755, 10.1016/S0196-8904(02)00217-0 Rinehart, 2001, Design characteristics and fabrication of radioisotope heat sources for space missions, Prog Nucl Energy, 39, 305, 10.1016/S0149-1970(01)00005-1 Lange, 2008, Review of recent advances of radioisotope power systems, Energy Convers Manage, 49, 393, 10.1016/j.enconman.2007.10.028 Bennett, 1996, Status report on the U.S. space nuclear program, Acta Astronaut, 38, 551, 10.1016/0094-5765(96)00038-0 El-Genk, 2006, Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples, Energy Convers Manage, 47, 174, 10.1016/j.enconman.2005.03.023 El-Genk, 2006, Thermal and performance analyses of efficient radioisotope power systems, Energy Convers Manage, 47, 2290, 10.1016/j.enconman.2005.11.022 Huang J. Aerospace and aircraft thermoelectric applications, Thermoelectrics applications Workshop. San Diego, CA: The Boeing Company; 2009. Kousksou, 2011, Numerical study of thermoelectric power generation for an helicopter conical nozzle, J Power Sources, 196, 4026, 10.1016/j.jpowsour.2010.12.015