A review on thermoelectric renewable energy: Principle parameters that affect their performance
Tài liệu tham khảo
Xi, 2007, Development and applications of solar-based thermoelectric technologies, Renew Sustain Energy Rev, 11, 923, 10.1016/j.rser.2005.06.008
Omer, 2008, Focus on low carbon technologies: the positive solution, Renew Sustain Energy Rev, 12, 2331, 10.1016/j.rser.2007.04.015
Thirugnanasambandam, 2010, A review of solar thermal technologies, Renew Sustain Energy Rev, 14, 312, 10.1016/j.rser.2009.07.014
Afshar, 2012, A review of thermodynamics and heat transfer in solar refrigeration system, Renew Sustain Energy Rev, 16, 5639, 10.1016/j.rser.2012.05.016
Kalkan, 2012, Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning, Renew Sustain Energy Rev, 16, 6352, 10.1016/j.rser.2012.07.014
Fthenakis, 2010, Life-cycle uses of water in U.S. electricity generation, Renew Sustain Energy Rev, 14, 2039, 10.1016/j.rser.2010.03.008
Liu, 2010, Active low-grade energy recovery potential for building energy conservation, Renew Sustain Energy Rev, 14, 2736, 10.1016/j.rser.2010.06.005
Wang, 2011, A review of researches on thermal exhaust heat recovery with Rankine cycle, Renew Sustain Energy Rev, 15, 2862, 10.1016/j.rser.2011.03.015
Saidur, 2012, Technologies to recover exhaust heat from internal combustion engines, Renew Sustain Energy Rev, 16, 5649, 10.1016/j.rser.2012.05.018
Vélez, 2012, A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation, Renew Sustain Energy Rev, 16, 4175, 10.1016/j.rser.2012.03.022
Martín-González, 2013, Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field, Renew Sustain Energy Rev, 24, 288, 10.1016/j.rser.2013.03.008
Shu, 2013, A review of waste heat recovery on two-stroke IC engine aboard ships, Renew Sustain Energy Rev, 19, 385, 10.1016/j.rser.2012.11.034
Riffat, 2003, Thermoelectrics: a review of present and potential applications, Appl Therm Eng, 23, 913, 10.1016/S1359-4311(03)00012-7
Dai, 2011, Liquid metal based thermoelectric generation system for waste heat recovery, Renew Energy, 36, 3530, 10.1016/j.renene.2011.06.012
Tie, 2013, A review of energy sources and energy management system in electric vehicles, Renew Sustain Energy Rev, 20, 82, 10.1016/j.rser.2012.11.077
Ullah, 2013, A review of solar thermal refrigeration and cooling methods, Renew Sustain Energy Rev, 24, 499, 10.1016/j.rser.2013.03.024
Tsubota, 2008, Thermoelectric properties of Sn1−x−yTiySbxO2 ceramics, J Alloys Compd, 463, 288, 10.1016/j.jallcom.2007.09.001
Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater Sci Eng R: Rep, 67, 19, 10.1016/j.mser.2009.10.001
Gao, 2006, Rational design of high-efficiency thermoelectric materials with low band gap conductive polymers, Comput Mater Sci, 36, 49, 10.1016/j.commatsci.2004.12.080
Zhan, 2006, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scr Mater, 54, 77, 10.1016/j.scriptamat.2005.09.003
Snyder, 2008, Complex thermoelectric materials, Nat Mater, 7, 105, 10.1038/nmat2090
Cai, 2004, The effect of titanium diboride addition on the thermoelectric properties of β-FeSi2 semiconductors, Solid State Commun, 131, 325, 10.1016/j.ssc.2004.04.028
Zide, 2006, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As∕In0.53Ga0.28Al0.19As superlattices, Phys Rev B, 74
Bian, 2006, Enhanced solid-state thermionic emission in nonplanar heterostructures, Appl Phys Lett, 88, 012102, 10.1063/1.2159574
Zheng, 2008, Recent advances on thermoelectric materials, Front Phys China, 3, 269, 10.1007/s11467-008-0028-9
Hochbaum, 2008, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451, 163, 10.1038/nature06381
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012
Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886
Sootsman, 2009, New and old concepts in thermoelectric materials, Angew Chem Int Ed, 48, 8616, 10.1002/anie.200900598
Nolas, 1999, KUTTERUDITES: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications, Annu Rev Mater Sci, 29, 89, 10.1146/annurev.matsci.29.1.89
HERWAARDEN, 1986, Sensors based on the seebeck effect, Sensors Actuat A: Phys, 10, 321, 10.1016/0250-6874(86)80053-1
Tritt, 2006, Thermoelectric materials, phenomena, and applications: a bird's eye view, MRS Bull, 31, 188, 10.1557/mrs2006.44
Pereira Gonçalves, 2010, Conducting glasses as new potential thermoelectric materials: the Cu–Ge–Te case, J Mater Chem, 20, 1516, 10.1039/B908579C
Dmitriev, 2010, Current trends in the physics of thermoelectric materials, Physics – Uspekhi, 53, 789, 10.3367/UFNe.0180.201008b.0821
Wan, 2010, Low-thermal-conductivity (MS)1+x(TiS2)2 (M=Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials, Materials, 3, 2606, 10.3390/ma3042606
Bulusu, 2008, Review of electronic transport models for thermoelectric materials, Superlattices Microstruct., 44, 1, 10.1016/j.spmi.2008.02.008
Ma, 2008, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks, Nano Lett., 8, 2580, 10.1021/nl8009928
Gonçalves, 2012, Semiconducting glasses: a new class of thermoelectric materials?, J. Solid State Chem., 193, 26, 10.1016/j.jssc.2012.03.031
Joshi, 2008, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett., 8, 4670, 10.1021/nl8026795
Cadoff, 1960
Das, 1998, Thickness and temperature effects on thermoelectric power and electrical resistivity of (Bi0.25Sb0.75)2Te3 thin films, Mater Chem Phys, 57, 57, 10.1016/S0254-0584(98)00203-X
Kowalczyk, 2008, Specific heat, electrical resistivity and thermoelectric power of YbNi4Si, Mater Res Bull, 43, 185, 10.1016/j.materresbull.2007.02.041
Wang, 2008, Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n=1, 2) ceramics, Ceram Int, 34, 849, 10.1016/j.ceramint.2007.09.034
Watanabe, 2012, Effects of metal substitution on the electric and thermoelectric properties in (Ni1−xMx)Mn2O4 (M=Zn and Mg), Thermochim Acta, 532, 56, 10.1016/j.tca.2011.12.018
Iversen, 2000, Why are clathrates good candidates for thermoelectric materials?, J Solid State Chem, 149, 455, 10.1006/jssc.1999.8534
Kleinke, 2010, New bulk materials for thermoelectric power generation: clathrates and complex antimonides†, Chem Mater, 22, 604, 10.1021/cm901591d
Christensen, 2006, The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering, Physica B: Condensed Matter, 385-386, 505, 10.1016/j.physb.2006.05.232
Anno, 2012, Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46−x (nominal x=14–18) clathrates prepared by combining arc melting and spark plasma sintering methods, J Solid State Chem, 193, 94, 10.1016/j.jssc.2012.03.069
Kim, 2003, Effects of doping on the high-temperature thermoelectric properties of IrSb3 skutterudite compounds, J Electron Mater, 32, 1141, 10.1007/s11664-003-0003-8
Vaqueiro, 2006, Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5, J Solid State Chem, 179, 2047, 10.1016/j.jssc.2006.04.004
Kim, 2007, Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting, J Alloys Compd, 442, 351, 10.1016/j.jallcom.2006.08.368
Ur, 2007, Thermoelectric properties of Fe-doped CoSb3 prepared by mechanical alloying and vacuum hot pressing, J Alloys Compd, 442, 358, 10.1016/j.jallcom.2006.08.369
Alboni, 2007, Synthesis and thermoelectric properties of nano-engineered CoSb3 skutterudite materials, J Electron Mater, 36, 711, 10.1007/s11664-007-0160-2
Matsuoka, 2006, Magnetic and thermoelectric properties of BayFe4−xCoxSb12, Physica B: Condensed Matter, 383, 132, 10.1016/j.physb.2006.03.078
Park, 2010, Thermoelectric properties of Ca-filled CoSb3-based skutterudites synthesized by mechanical alloying, J Electron Mater, 40, 493, 10.1007/s11664-010-1400-4
Kim, 2004, Effect of partial La filling on high-temperature thermoelectric properties of IrSb3-based skutterudite compounds, J Electron Mater, 33, 1156, 10.1007/s11664-004-0117-7
Alleno, 2006, Double filling in skutterudites: a promising path to improved thermoelectric properties, Physica B: Condensed Matter, 383, 103, 10.1016/j.physb.2006.03.068
Sklad, 2010, Examination of CeFe4Sb12 upon exposure to air: is this material appropriate for use in terrestrial, high-temperature thermoelectric devices?, 505, L6
Rogl, 2011, A new generation of p-type didymium skutterudites with high ZT, Intermetallics, 19, 546, 10.1016/j.intermet.2010.12.001
Grytsiv, 2003, Novel thermoelectric skutterudites SnyNi4Sb12−xSnx, Physica B: Condensed Matter, 328, 71, 10.1016/S0921-4526(02)01812-4
Jung, 2008, Thermoelectric properties of InzCo4Sb12−yTey skutterudites, Mater Chem Phys, 108, 431, 10.1016/j.matchemphys.2007.10.021
Lu, 2010, Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite, J Alloys Compd, 505, 255, 10.1016/j.jallcom.2010.06.040
Liu, 2006, The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA–SPS, Mater Chem Phys, 96, 371, 10.1016/j.matchemphys.2005.07.068
Ravot, 2001, Anomalous physical properties of cerium–lanthanum filled skutterudites, J Alloys Compd, 323–324, 389, 10.1016/S0925-8388(01)01071-4
Bai, 2009, Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12, Acta Mater, 57, 3135, 10.1016/j.actamat.2009.03.018
Ballikaya, 2012, High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds, J Solid State Chem, 193, 31, 10.1016/j.jssc.2012.03.029
Chakoumakos, 2006, Skutterudites: their structural response to filling, J Alloys Compd, 407, 87, 10.1016/j.jallcom.2005.06.073
Deng, 2011, The thermoelectric properties of Co4Sb12-xTex synthesized at different pressure, Mater Lett, 65, 1057, 10.1016/j.matlet.2010.12.052
Wojciechowski, 2003, Thermoelectric properties and electronic structure of CoSb3 doped with Se and Te, J Alloys Compd, 361, 19, 10.1016/S0925-8388(03)00411-0
Kitagawa, 2005, Temperature dependence of thermoelectric properties of Ni-doped CoSb3, J Phys Chem Solids, 66, 1635, 10.1016/j.jpcs.2005.05.077
Peng, 2004, Preparation and characterization of Fe substituted CoSb3 skutterudite by mechanical alloying and annealing, J Alloys Compd, 381, 313, 10.1016/j.jallcom.2004.03.104
Yu, 2013, Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials, Scr Mater, 68, 643, 10.1016/j.scriptamat.2012.12.029
Shi, 2009, Thermoelectric properties of n-type multiple-filled Skutterudites, J Electron Mater, 38, 930, 10.1007/s11664-008-0650-x
Shi, 2011, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J Am Chem Soc, 133, 7837, 10.1021/ja111199y
Zou, 2013, Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium, J Solid State Chem, 198, 125, 10.1016/j.jssc.2012.09.043
Wang, 2010, Structural and thermoelectric properties of HfNiSn half-Heusler thin films, Thin Solid Films, 518, 5901, 10.1016/j.tsf.2010.05.080
Kawaharada, 2004, High temperature thermoelectric properties of CoNb1−xHfxSn1−ySby half-Heusler compounds, J Alloys Compd, 377, 312, 10.1016/j.jallcom.2004.02.017
Shutoh, 2005, Thermoelectric properties of the TiX(Zr0.5Hf0.5)1−xNiSn half-Heusler compounds, J Alloys Compd, 389, 204, 10.1016/j.jallcom.2004.05.078
Lee, 2010, High-temperature thermoelectric properties of Ti0.5(ZrHf)0.5−xNbxNi0.9Pd0.1Sn0.98Sb0.02 half-Heusler alloys, J Alloys Compd, 504, 192, 10.1016/j.jallcom.2010.05.086
Fu, 2013, Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering, Intermetallics, 32, 39, 10.1016/j.intermet.2012.07.037
Maji, 2010, Effects of Rh on the thermoelectric performance of the p-type Zr0.5Hf0.5Co1−xRhxSb0.99Sn0.01 half-Heusler alloys, J Solid State Chem, 183, 1120, 10.1016/j.jssc.2010.03.023
Nylén, 2007, Effect of metal doping on the low-temperature structural behavior of thermoelectric β-Zn4Sb3, J Solid State Chem, 180, 2603, 10.1016/j.jssc.2007.07.013
Carreon, 2013, On the exploitation of thermoelectric coupling for characterization of elliptical inclusions in metals, Expl Therm Fluid Sci, 44, 673, 10.1016/j.expthermflusci.2012.09.007
Ferreira, 2012, New method to improve the grain alignment and performance of thermoelectric ceramics, Mater Lett, 83, 144, 10.1016/j.matlet.2012.05.131
Liu, 2012, Synthesis and thermoelectric performance of Li-doped NiO ceramics, Ceram Int, 38, 5023, 10.1016/j.ceramint.2012.02.099
Wang, 2010, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Mater Res Bull, 45, 809, 10.1016/j.materresbull.2010.03.018
Constantinescu, 2013, Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics, Scr Mater, 68, 75, 10.1016/j.scriptamat.2012.09.014
Kenfaui, 2010, Texture mechanical and thermoelectric properties of Ca3Co4O9 ceramics, J Alloys Compd, 490, 472, 10.1016/j.jallcom.2009.10.048
Li, 2011, Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics, Ceram Int, 37, 105, 10.1016/j.ceramint.2010.08.024
Liu, 2010, Thermoelectric properties of Sr1−xNdxTiO3 ceramics, J Alloys Compd, 492, L54, 10.1016/j.jallcom.2009.11.165
Tajima, 2001, Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method, Mater Sci Eng, B86, 20, 10.1016/S0921-5107(01)00633-X
Wang, 2012, Synthesis and post-annealing effects on the transport properties of thermoelectric oxide (ZnO)mIn2O3 ceramics, Ceram Int, 38, 1167, 10.1016/j.ceramint.2011.06.068
Yasukawa, 2006, Preparation of dense BaPbO3-based ceramics by a coprecipitation and their thermoelectric properties, J Alloys Compd, 426, 420, 10.1016/j.jallcom.2006.03.098
Yasukawa, 2010, High-temperature thermoelectric properties of La-doped BaSnO3 ceramics, Mater Sci Eng B, 173, 29, 10.1016/j.mseb.2009.10.002
Wang, 2010, Enhanced thermoelectric properties of Nb-doped SrTiO3 polycrystalline ceramic by titanate nanotube addition, J Alloys Compd, 506, 293, 10.1016/j.jallcom.2010.06.195
Delorme, 2011, Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 Ceramics, J Alloys Compd, 509, 2311, 10.1016/j.jallcom.2010.10.209
Noudem, 2008, Thermoelectric ceramics for generators, J Eur Ceram Soc, 28, 41, 10.1016/j.jeurceramsoc.2007.05.012
Tsai, 2011, Widely variable Seebeck coefficient and enhanced thermoelectric power of PEDOT:PSS films by blending thermal decomposable ammonium formate, Org Electron, 12, 2159, 10.1016/j.orgel.2011.09.004
Choi, 2011, Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites, Org Electron, 12, 2120, 10.1016/j.orgel.2011.08.025
Yue, 2012, Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review, Synth Met, 162, 912, 10.1016/j.synthmet.2012.04.005
Chatterjee, 2009, Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite — a novel thermoelectric material, Mater Charact, 60, 1597, 10.1016/j.matchar.2009.09.012
Du, 2012, Research progress on polymer–inorganic thermoelectric nanocomposite materials, Prog Polym Sci, 37, 820, 10.1016/j.progpolymsci.2011.11.003
Zhang, 2009, Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1−xCdx)3Sb2 doped with Ag, J Alloys Compd, 484, 498, 10.1016/j.jallcom.2009.04.130
Chen, 2005, Performance optimization of a two-stage semiconductor thermoelectric-generator, Appl Energy, 82, 300, 10.1016/j.apenergy.2004.12.003
Dughaish, 2005, Lead telluride as a thermoelectric material for thermoelectric power generation, Physica B, 322, 205, 10.1016/S0921-4526(02)01187-0
Majumdar, 2004, Thermoelectricity in semiconductor nanostructures, Mater Sci, 303, 777
Alam, 2013, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, 2, 190, 10.1016/j.nanoen.2012.10.005
Tani J-i, 2005, Thermoelectric properties of Bi-doped Mg2Si semiconductors, Physica B: Condensed Matter, 364, 218, 10.1016/j.physb.2005.04.017
Ozpineci, 2003
Omar, 2006, The optical energy gap dependence on both carrier concentration and intrinsic energy gap in n-type semiconductors, Mater Sci Semiconduct Process, 9, 164, 10.1016/j.mssp.2006.01.045
Gao, 2012, Thermoelectric properties of Cu and Sb Co-doped Ga-Te based semiconductor with wide band gap, Proc Eng, 27, 156, 10.1016/j.proeng.2011.12.438
Hummel, 2011
Nag, 1995, Direct band-gap energy of semiconductors, Infrared Phys Technol, 36, 831, 10.1016/1350-4495(95)00023-R
Zhang, 2011, First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide, J Alloys Compd, 509, 542, 10.1016/j.jallcom.2010.09.102
Ramdas, 2005, Electronic band gaps of semiconductors as influenced by their isotopic composition, Solid State Commun, 133, 709, 10.1016/j.ssc.2004.12.038
Tan, 2012, Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration, J Alloys Compd, 513, 328, 10.1016/j.jallcom.2011.10.042
Wang, 2011, Optimizing thermoelectric performance of Cd-doped β-Zn4Sb3 through self-adjusting carrier concentration, Intermetallics, 19, 1823, 10.1016/j.intermet.2011.07.020
Delaizir, 2012, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties, Mater Res Bull, 47, 1954, 10.1016/j.materresbull.2012.04.019
Drasar, 2012, Thermoelectric properties and nonstoichiometry of GaGeTe, J Solid State Chem, 193, 42, 10.1016/j.jssc.2012.03.030
Roudebush, 2011, Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8−ySryAl14Si32 (0.6≤y≤1.3) prepared by aluminum flux, J Solid State Chem, 184, 1176, 10.1016/j.jssc.2011.02.027
Mikhnovich, 2001, Scattering of charge carriers in semiconductors: models and their criteria, Physica, B 308–310, 1023, 10.1016/S0921-4526(01)00904-8
Karl, 2003, Charge carrier transport in organic semiconductors, Synth Met, 133–134, 649, 10.1016/S0379-6779(02)00398-3
Uberuaga, 2002, Theoretical studies of self-diffusion and dopant clustering in semiconductors, Phys stat sol, 233, 24, 10.1002/1521-3951(200209)233:1<24::AID-PSSB24>3.0.CO;2-5
Bracht, 2005, Advanced diffusion studies with isotopically controlled materials, Solid State Commun, 133, 727, 10.1016/j.ssc.2004.12.024
Cui, 2002, Preparation, thermoelectric properties and interface analysis of n-type graded material FeSi2/Bi2Te3, Mater Sci Eng, B94, 223, 10.1016/S0921-5107(02)00092-2
Nakagawa, 2005, Control of point defects and grain boundaries in advanced materials, Nucl Inst Meth Phys Res Sect B: Beam Inter Mater Atoms, 232, 343, 10.1016/j.nimb.2005.03.070
Wanwan, 2006, Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe, J Crystal Growth, 292, 53, 10.1016/j.jcrysgro.2006.03.058
Bae, 2011, Diffusion at interfaces of micro thermoelectric devices, Curr Appl Phys, 11, S40, 10.1016/j.cap.2011.05.036
Xu, 2012, Effects of the oxygen partial pressure during deposition on the material characteristics and magnetic properties of BaM thin films, J Alloys Compd, 538, 11, 10.1016/j.jallcom.2012.05.101
Terasaki, 2003, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Physica B: Condensed Matter, 328, 63, 10.1016/S0921-4526(02)01810-0
Ito, 2008, Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4, J Alloys Compd, 450, 494, 10.1016/j.jallcom.2006.11.032
Zhou, 2011, Effects of annealing atmosphere on thermoelectric signals from ZnO films, Thin Solid Films, 519, 3026, 10.1016/j.tsf.2010.12.011
Li, 2011, Low temperature (<100°C) deposited P-type cuprous oxide thin films: importance of controlled oxygen and deposition energy, Thin Solid Films, 520, 1278, 10.1016/j.tsf.2011.04.192
Liu, 2007, Processing method dependency of thermoelectric properties of Bi85Sb15 alloys in low temperature, Cryogenics, 47, 56, 10.1016/j.cryogenics.2006.09.007
Prokhorov, 2011, Detection of internal cracks and ultrasound characterization of nanostructured Bi2Te3-based thermoelectrics via acoustic microscopy, Ultrasonics, 51, 715, 10.1016/j.ultras.2011.02.005
Moon, 2010, Microstructure and thermoelectric properties of p-type Bi2Te3–Sb2Te3 alloys produced by rapid solidification and spark plasma sintering, J Alloys Compd, 504, S504, 10.1016/j.jallcom.2010.03.114
Kim, 2007, Microstructure and thermoelectric properties of n- and p-type Bi2Te3 alloys by rapid solidification processes, J Alloys Compd, 437, 225, 10.1016/j.jallcom.2006.07.090
Ren, 2008, Hardness as a function of composition for n-type LAST thermoelectric material, J Alloys Compd, 455, 340, 10.1016/j.jallcom.2007.01.086
Zhou, 2012, Thermal stability and elastic properties of Mg2X (X=Si, Ge, Sn, Pb) phases from first-principle calculations, Comput Mater Sci, 51, 409, 10.1016/j.commatsci.2011.07.012
Fan, 2012, Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials, J Mech Behav Biomed Mater, 8, 99, 10.1016/j.jmbbm.2011.12.014
Hong, 2003, Thermoelectric properties of newly fabricated n-type 95%Bi2Te2–5%Bi2Se3 alloys by gas atomizing and extrusion process, Mater Sci Eng B, 98, 232, 10.1016/S0921-5107(03)00042-4
Zhao, 2009, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, J Alloys Compd, 477, 425, 10.1016/j.jallcom.2008.10.037
Zhao, 2012, Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element, J Alloys Compd, 517, 198, 10.1016/j.jallcom.2011.12.130
Zhu, 2010, Ultra-strength materials, Prog Mater Sci, 55, 710, 10.1016/j.pmatsci.2010.04.001
Jung D-y, 2010, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M=Ti, Zr, Hf), J Alloys Compd, 489, 328, 10.1016/j.jallcom.2009.09.139
Huang, 2006, Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect, Sens Actuat A: Phys, 126, 122, 10.1016/j.sna.2005.10.006
Al-Merbati, 2013, Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance, Appl Therm Eng, 50, 683, 10.1016/j.applthermaleng.2012.07.021
Asenath-Smith, 2011, Structural behavior and thermoelectric properties of the brownmillerite system Ca2(ZnxFe2−x)O5, J Solid State Chem, 184, 2167, 10.1016/j.jssc.2011.06.009
Tachibana, 2012, An estimation of thermal stress of thermoelectric devices in the temperature cycling test, Proc Eng, 27, 177, 10.1016/j.proeng.2011.12.441
Rogl, 2012, Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12, J Alloys Compd, 537, 183, 10.1016/j.jallcom.2012.05.011
Ahiska, 2012, A new method and computer-controlled system for measuring the time constant of real thermoelectric modules, Energy Convers Manage, 53, 314, 10.1016/j.enconman.2011.09.003
Chein, 2004, Thermoelectric cooler application in electronic cooling, Appl Therm Eng, 24, 2207, 10.1016/j.applthermaleng.2004.03.001
Putra, 2011, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment, Exp Therm Fluid Sci, 35, 1274, 10.1016/j.expthermflusci.2011.04.015
Zhang, 2010, Analysis of thermoelectric cooler performance for high power electronic packages, Appl Therm Eng, 30, 561, 10.1016/j.applthermaleng.2009.10.020
PrezAparicio, 2012, Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers, Int J Heat Mass Transf, 55, 1363, 10.1016/j.ijheatmasstransfer.2011.08.031
Chang, 2009, Thermoelectric air-cooling module for electronic devices, Appl Therm Eng, 29, 2731, 10.1016/j.applthermaleng.2009.01.004
Huang, 2010, Thermoelectric water-cooling device applied to electronic equipment, Int Commun Heat Mass Transf, 37, 140, 10.1016/j.icheatmasstransfer.2009.08.012
Zhou, 2012, Design optimization of thermoelectric cooling systems for applications in electronic devices, Int J Refrig, 35, 1139, 10.1016/j.ijrefrig.2011.12.003
Wang, 2013, Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis, Int J Heat Mass Transf, 63, 361, 10.1016/j.ijheatmasstransfer.2013.03.078
Abdul-Wahab, 2009, Design and experimental investigation of portable solar thermoelectric refrigerator, Renew Energy, 34, 30, 10.1016/j.renene.2008.04.026
Dai, 2003, Experimental investigation on a thermoelectric refrigerator driven by solar cells, Renew Energy, 28, 949, 10.1016/S0960-1481(02)00055-1
Chen, 2012, Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system, Cryogenics, 52, 58, 10.1016/j.cryogenics.2011.10.007
Luo, 2013, Low temperature thermoelectric properties of melt spun Bi85Sb15 alloys, Intermetallics, 32, 96, 10.1016/j.intermet.2012.08.007
Meng, 2011, Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger, Acta Phys Pol A, 120, 397, 10.12693/APhysPolA.120.397
Available at www.tetech.com; 2010.
Shen, 2013, Investigation of a novel thermoelectric radiant air-conditioning system, Energy Build, 59, 123, 10.1016/j.enbuild.2012.12.041
Riffat, 2004, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners, Appl Therm Eng, 24, 1979, 10.1016/j.applthermaleng.2004.02.010
Cherkez, 2012, Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter, Appl Therm Eng, 38, 7, 10.1016/j.applthermaleng.2012.01.012
Niu, 2009, Experimental study on low-temperature waste heat thermoelectric generator, J Power Sources, 188, 621, 10.1016/j.jpowsour.2008.12.067
Vullers, 2009, Micropower energy harvesting, Solid-State Electron, 53, 684, 10.1016/j.sse.2008.12.011
Snyder G.J. Small thermoelectric generators. Interface: the electrochemical society, Fall; 2008. p. 54–6.
Group A-hW, 2010
Yu, 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Convers Manage, 50, 1506, 10.1016/j.enconman.2009.02.015
Hsu, 2011, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Appl Energy, 88, 1291, 10.1016/j.apenergy.2010.10.005
Karri, 2011, Exhaust energy conversion by thermoelectric generator: two case studies, Energy Convers Manage, 52, 1596, 10.1016/j.enconman.2010.10.013
Gou, 2013, A dynamic model for thermoelectric generator applied in waste heat recovery, Energy, 52, 201, 10.1016/j.energy.2013.01.040
Yee, 2013, $ per W metrics for thermoelectric power generation: beyond ZT, Energy Environ Sci, 6, 2561, 10.1039/C3EE41504J
Sano S, Mizukami H, Kaibe H. Development of high-efficiency thermoelectric power generation system. KOMAT'SU; 2003.
Omer, 1998, Design optimization of thermoelectric devices for solar power generation, Solar Energy Mater Solar Cells, 53, 67, 10.1016/S0927-0248(98)00008-7
Omer, 2000, Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation, Energy Convers Manage, 41, 737, 10.1016/S0196-8904(99)00134-X
Suter, 2010, Heat transfer and geometrical analysis of thermoelectric converters driven by concentrated solar radiation, Materials, 3, 2735, 10.3390/ma3042735
He, 2012, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renew Energy, 37, 142, 10.1016/j.renene.2011.06.002
Kraemer, 2012, Modeling and optimization of solar thermoelectric generators for terrestrial applications, Solar Energy, 86, 1338, 10.1016/j.solener.2012.01.025
Xiao, 2012, Thermal design and management for performance optimization of solar thermoelectric generator, Appl Energy, 93, 33, 10.1016/j.apenergy.2011.06.006
Deng, 2013, Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design, Solar Energy, 88, 182, 10.1016/j.solener.2012.12.002
Miljkovic, 2011, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons, Solar Energy, 85, 2843, 10.1016/j.solener.2011.08.021
Faïd, 1998, A comparative study of local sensors of power ultrasound effects electrochemical, thermoelectrical and chemical probes, Ultrason Sonochem, 5, 63, 10.1016/S1350-4177(98)00008-X
Ahamat, 2011, Timewise temperature control with heat metering using a thermoelectric module, Appl Thermal Eng, 31, 1421, 10.1016/j.applthermaleng.2011.01.002
Vancauwenberghe, 1996, Microsensor for the preventive detection of water condensation: operating principle and interface electronics, Sens Actuat A, 53, 304, 10.1016/0924-4247(96)01172-7
Sawaguchi, 2005, Effect of humidity on the sensing property of thermoelectric hydrogen sensor, Sens Actuat B: Chem, 108, 461, 10.1016/j.snb.2004.12.078
Stachowiak, 1998, A thermoelectric sensor for fluid flow measurement. principles, calibration and solution for self temperature compensation, Flow Meas Instrum, 9, 135, 10.1016/S0955-5986(98)00025-9
Jacobs, 2009, Combination of a novel perforated thermoelectric flow and impedimetric sensor for monitoring chemical conversion in micro fluidic channels, Proc Chem, 1, 1127, 10.1016/j.proche.2009.07.281
Jacobs, 2009, Novel pressure stable thermoelectric flow sensor in non-steady state operation mode for inline process analysis in micro reactors, Proc Chem, 1, 148, 10.1016/j.proche.2009.07.037
Mülller, 1996, A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor, Sens Actuat A, 54, 601, 10.1016/S0924-4247(97)80022-2
Escriba, 2005, Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors, Sens Actuat A: Phys, 120, 267, 10.1016/j.sna.2004.11.027
Hirota, 2007, 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber, Sens Actuat A: Phys, 135, 146, 10.1016/j.sna.2006.06.058
Ploteau, 2007, Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces, Appl Therm Eng, 27, 674, 10.1016/j.applthermaleng.2006.05.010
Ihring, 2011, Surface-micromachined thermoelectric infrared focal-plane array with high detectivity for room temperature operation, Microelectron Eng, 88, 2267, 10.1016/j.mee.2011.02.075
Sion, 2012, Unpackaged infrared thermoelectric microsensor realised on suspended membrane by silicon technology, Sens Actuat A: Phys, 175, 78, 10.1016/j.sna.2011.12.051
Kopparthy, 2012, Thermoelectric microfluidic sensor for bio-chemical applications, Sens Actuat B: Chem, 166-167, 608, 10.1016/j.snb.2012.03.021
Kozlov, 1999, Optimization of thin-film thermoelectric radiation sensor with comb thermoelectric transducer, Sens Actuat, 75, 139, 10.1016/S0924-4247(99)00015-1
Kozlov, 2000, Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer, Sens Actuat, 84, 259, 10.1016/S0924-4247(00)00358-7
El-Genk, 2005, Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems, Energy Convers Manage, 46, 1083, 10.1016/j.enconman.2004.06.019
O’Brien, 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, J Nucl Mater, 377, 506, 10.1016/j.jnucmat.2008.04.009
El-Genk, 2003, Efficient segmented thermoelectric unicouples for space power applications, Energy Convers Manage, 44, 1755, 10.1016/S0196-8904(02)00217-0
Rinehart, 2001, Design characteristics and fabrication of radioisotope heat sources for space missions, Prog Nucl Energy, 39, 305, 10.1016/S0149-1970(01)00005-1
Lange, 2008, Review of recent advances of radioisotope power systems, Energy Convers Manage, 49, 393, 10.1016/j.enconman.2007.10.028
Bennett, 1996, Status report on the U.S. space nuclear program, Acta Astronaut, 38, 551, 10.1016/0094-5765(96)00038-0
El-Genk, 2006, Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples, Energy Convers Manage, 47, 174, 10.1016/j.enconman.2005.03.023
El-Genk, 2006, Thermal and performance analyses of efficient radioisotope power systems, Energy Convers Manage, 47, 2290, 10.1016/j.enconman.2005.11.022
Huang J. Aerospace and aircraft thermoelectric applications, Thermoelectrics applications Workshop. San Diego, CA: The Boeing Company; 2009.
Kousksou, 2011, Numerical study of thermoelectric power generation for an helicopter conical nozzle, J Power Sources, 196, 4026, 10.1016/j.jpowsour.2010.12.015