A review on thermal analyses of cyclodextrins and cyclodextrin complexes
Tóm tắt
Cyclodextrins are valuable natural or synthetically modified cyclic oligosaccharides that are widely used for ameliorating properties of biologically active compounds such as food additives and ingredients or medicinal compounds. They protect these compounds against light and oxidative degradation and provide host–guest supramolecular complexes having controlled release properties by molecular encapsulation, enhancing the water solubility and bioavailability. Among many characterization methods that are applicable in both solution and solid state, thermal techniques were widely used for analysis and stability evaluation of cyclodextrins and cyclodextrin complexes. This updated review deals with the use of thermal methods for analysis of cyclodextrins and cyclodextrin complexes. Classical and modern thermal techniques used for evaluation of inclusion compound formation were reviewed. Special attention was gave for thermogravimetry–differential thermogravimetry, differential thermal analysis, differential scanning calorimetry, hot stage microscopy, as well as for the more recent techniques thermogravimetry–mass spectrometry, gas chromatography-time-of-flight-mass spectrometry and isothermal titration calorimetry. In order to evaluate the cyclodextrin complexation capability by thermal methods, we grouped for the first time the guest compound as drugs by anatomical therapeutic chemical classification (ATC), as well as odorants, essential oils and vegetable extracts, antioxidants, fatty acids, oils, fatty acid-based derivatives, other organic, organometallic and inorganic compounds. The formation of cyclodextrin inclusion complexes was emphasized by disappearance of the signal corresponding to the melting or boiling points of the guest compound and the behavior of the hydration water molecules in the complex in comparison with the raw host and guest compounds. The thermal stability of the guest compound after cyclodextrin complexation was also discussed. It was emphasized that thermal methods are some of the most valuable techniques for analyzing cyclodextrin complexes and together with other methods can complete the information related to the host–guest molecular inclusion process and the specific properties of these cyclodextrin complexes.
Tài liệu tham khảo
Alvarez-Parrilla E, de la Rosa LA, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 53:121–129. https://doi.org/10.1007/s10847-005-1620-z
Ammar HO, Ghorab M, Mahmoud AA, Makram TS, Noshi SH (2012) Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex. J Incl Phenom Macrocycl Chem 73:161–175. https://doi.org/10.1007/s10847-011-0039-y
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
Bertacche V, Lorenzi N, Nava D, Pini E, Sinico C (2006) Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J Incl Phenom Macrocycl Chem 55:279–287. https://doi.org/10.1007/s10847-006-9047-8
Bonetti P, de Moraes FF, Zanin GM, de Cássia Bergamasco R (2016) Thermal behavior study and decomposition kinetics of linalool/β-cyclodextrin inclusion complex. Polym Bull 73:279–291. https://doi.org/10.1007/s00289-015-1486-1
Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666. https://doi.org/10.1016/j.addr.2007.05.012
Cabral Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. https://doi.org/10.1002/ffj.2019
Cabral Marques HM, Hadgraft J, Kellaway IW (1990) Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm 63:259–266. https://doi.org/10.1016/0378-5173(90)90132-N
Calabrò ML, Tommasini S, Donato P, Raneri D, Stancanelli R, Ficarra P, Ficarra R, Costa C, Catania S, Rustichelli C, Gamberini G (2004) Effects of α- and β-cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. J Pharm Biomed Anal 35:365–377. https://doi.org/10.1016/j.jpba.2003.12.005
Calsavara LPV, Zanin GM, de Moraes FF (2012) Enrofloxacin inclusion complexes with cyclodextrins. J Incl Phenom Macrocycl Chem 73:219–224. https://doi.org/10.1007/s10847-011-0045-0
Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Contr Rel 123:78–99. https://doi.org/10.1016/j.jconrel.2007.07.018
Cavalli R, Trotta F, Trotta M, Pastero L, Aquilano D (2007) Effect of alkylcarbonates of γ-cyclodextrins with different chain lengths on drug complexation and release characteristics. Int J Pharm 339:197–204. https://doi.org/10.1016/j.ijpharm.2007.03.001
Ceborska M, Zimnicka M, Wszelaka-Rylik M, Troć A (2016) Characterization of folic acid/native cyclodextrins host-guest complexes in solution. J Mol Struct 1109:114–118. https://doi.org/10.1016/j.molstruc.2015.12.082
Corciova A, Ciobanu C, Poiata A, Mircea C, Nicolescu A, Drobota M, Varganici C-D, Pinteala T, Marangoci N (2015) Antibacterial and antioxidant properties of hesperidin: β-cyclodextrin complexes obtained by different techniques. J Incl Phenom Macrocycl Chem 81(1):71–84. https://doi.org/10.1007/s10847-014-0434-2
de Matos Jensen CE, Souza dos Santos RA, Denadai AML, Santos CFF, Braga ANG, Sinisterra RD (2010) Pharmaceutical composition of valsartan: β-cyclodextrin: physico-chemical characterization and anti-hypertensive evaluation. Molecules 15:4067–4084. https://doi.org/10.3390/molecules15064067
Dewick PM (2011) Medicinal natural products. a biosynthetic approach, 3rd edn. Wiley, Chichester. https://doi.org/10.1002/9780470742761
Dias K, Nikolaou S, De Giovani WF (2008) Synthesis and spectral investigation of Al(III) catechin/β-cyclodextrin and Al(III) quercetin/β-cyclodextrin inclusion compounds. Spectrochim Acta, Part A 70(1):154–161. https://doi.org/10.1016/j.saa.2007.07.022
Dollimore D, Phang P (2006) Simultaneous techniques in thermal analysis. In: Meyers RA, Dollimore D (eds) Encyclopedia of analytical chemistry. Wiley, Hoboken, pp 1–8. https://doi.org/10.1002/9780470027318.a6604
dos Santos C, del Pilar Buera M, Mazzobre MF (2011) Phase solubility studies of terpineol with β-cyclodextrins and stability of the freeze-dried inclusion complex. Proc Food Sci 1:355–362. https://doi.org/10.1016/j.profoo.2011.09.055
Duchêne D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72. https://doi.org/10.1016/j.ijpharm.2016.07.030
Éhen Z, Giordano F, Sztatisz J, Jicsinszky L, Novák C (2005) Thermal characterization of natural and modified cyclodextrins using TG-MS combined technique. J Therm Anal Calorim 80:419–424. https://doi.org/10.1007/s10973-005-0670-1
Giordano F, Novak C, Moyano R (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 380:123–151. https://doi.org/10.1016/S0040-6031(01)00665-7
Giron D (2002) Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim 68:335–357. https://doi.org/10.1023/A:1016015113795
Guimarães AG, Oliveira MA, Alves RS, Menezes PP, Serafini MR, Araújo AAS, Bezerra DP, Quintans LJ Jr (2015) Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biol Interact 227:69–76. https://doi.org/10.1016/j.cbi.2014.12.020
Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99:500–508. https://doi.org/10.1016/j.foodchem.2005.08.012
Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A (2010) Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 68:155–164. https://doi.org/10.1007/s10847-010-9761-0
Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D (2012a) Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem 132:1651–1659. https://doi.org/10.1016/j.foodchem.2011.06.004
Hădărugă NG, Hădărugă DI, Isengard H-D (2012b) Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem 132:1741–1748. https://doi.org/10.1016/j.foodchem.2011.11.003
Hădărugă DI, Ünlüsayin M, Gruia AT, Birău (Mitroi) C, Rusu G, Hădărugă NG (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J Org Chem 12:179–191. https://doi.org/10.3762/bjoc.12.20
Hădărugă DI, Birău (Mitroi) CL, Gruia AT, Păunescu V, Bandur GN, Hădărugă NG (2017) Moisture evaluation of β-cyclodextrin/fish oils complexes by thermal analyses: a data review on common barbel (Barbus barbus L.), Pontic shad (Alosa immaculata Bennett), European wels catfish (Silurus glanis L.), and common bleak (Alburnus alburnus L.) living in Danube river. Food Chem 236:49–58. https://doi.org/10.1016/j.foodchem.2017.03.093
Hădărugă NG, Bandur GN, Hădărugă DI (2018) Thermal analyses of cyclodextrin complexes. In: Fourmentin S, Crini G, Lichtfouse E (eds) Cyclodextrin fundamentals, reactivity and analysis, vol 16. Environmental chemistry for a sustainable world Series. Springer, Berlin, pp 155–221. https://doi.org/10.1007/978-3-319-76159-6_4
Haiyun D, Jianbin C, Guomei Z, Shaomin S, Jinhao P (2003) Preparation and spectral investigation on inclusion complex of β-cyclodextrin with rutin. Spectrochim Acta Part A 59:3421–3429. https://doi.org/10.1016/S1386-1425(03)00176-8
He D, Deng P, Yang L, Tan Q, Liu J, Yang M, Zhang J (2013) Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-β-cyclodextrin: design; characterization and in vitro dissolution. Colloids Surf B Biointerfaces 103:580–585. https://doi.org/10.1016/j.colsurfb.2012.10.062
Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93. https://doi.org/10.1016/j.lwt.2012.11.011
Huang Y, Zu Y, Zhao X, Wu M, Feng Z, Deng Y, Zu C, Wang L (2016) Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int J Pharm 511:921–930. https://doi.org/10.1016/j.ijpharm.2016.08.007
Ikeda H, Fukushige Y, Matsubara T, Inenaga M, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H (2016) Improving water solubility of nateglinide by complexation of β-cyclodextrin. J Therm Anal Calorim 123:1847–1850. https://doi.org/10.1007/s10973-015-4714-x
Jamrógiewicza M, Wielgomas B, Strankowskic M (2014) Evaluation of the photoprotective effect of β-cyclodextrin on the emission of volatile degradation products of ranitidine. J Pharm Biomed Anal 98:113–119. https://doi.org/10.1016/j.jpba.2014.05.014
Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem 101:652–658. https://doi.org/10.1016/j.foodchem.2006.01.053
Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H (2014) Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 80(1):51–60. https://doi.org/10.1007/s10847-014-0385-7
Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164. https://doi.org/10.1016/j.carbpol.2014.10.073
Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S (2017) Nootkatone encapsulation by cyclodextrins: effect on water solubility and photostability. Food Chem 236:41–48. https://doi.org/10.1016/j.foodchem.2016.12.086
Koontz JL, Marcy JE (2003) Formation of natamycin: cyclodextrin inclusion complexes and their characterization. J Agr Food Chem 51:7106–7110. https://doi.org/10.1021/jf030332y
Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
Li J-H, Zhang N, Li X-T, Wang J-Y, Tian S-J (1997) Kinetic studies on the thermal dissociation of the inclusion complex of β-cyclodextrin with cinnamic aldehyde. J Therm Anal 49:1527–1533. https://doi.org/10.1007/BF01983713
Lima PSS, Lucchese AM, Araújo-Filho HG, Menezes PP, Araújo AAS, Quintans-Jr LJ, Quintans JSS (2016) Inclusion of terpenes in cyclodextrins: preparation, characterization and pharmacological approaches. Carbohydr Polym 151:965–987. https://doi.org/10.1016/j.carbpol.2016.06.040
Lin-Hui T, Zheng-Zhi P, Ying Y (1995) Inclusion complexes of α-and β-cyclodextrin with α-lipoic acid. J Incl Phenom Mol Recognit Chem 23:119–126. https://doi.org/10.1007/BF00707889
Liu B, Li W, Zhao J, Liu Y, Zhu X, Liang G (2013) Physicochemical characterisation of the supramolecular structure of luteolin/cyclodextrin inclusion complex. Food Chem 141:900–906. https://doi.org/10.1016/j.foodchem.2013.03.097
Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
Loh GOK, Tan YTF, Peh K-K (2016) Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci 11:536–546. https://doi.org/10.1016/j.ajps.2016.02.009
Majumdar S, Srirangam R (2009) Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res 26(5):1217–1225. https://doi.org/10.1007/s11095-008-9729-6
Makhlof A, Miyazaki Y, Tozuka Y, Takeuchi H (2008) Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int J Pharm 357:280–285. https://doi.org/10.1016/j.ijpharm.2008.01.025
Malaekeh-Nikouei B, Nassirli H, Davies N (2007) Enhancement of cyclosporine aqueous solubility using α- and hydroxypropyl β-cyclodextrin mixtures. J Incl Phenom Macrocycl Chem 59:245–250. https://doi.org/10.1007/s10847-007-9321-4
Malanga M, Szemán J, Fenyvesi E, Puskás I, Csabai K, Gyémánt G, Fenyvesi F, Szente L (2016) “Back to the future”: a new look at hydroxypropyl-beta-cyclodextrins. J Pharm Sci 105:2921–2931. https://doi.org/10.1016/j.xphs.2016.04.034
Manakov AY, Rodionova TV, Aladko LS, Villevald GV, Lipkowski JS, Zelenina LN, Chusova TP, Karpova TD (2016) α-Cyclodextrin—Water binary system. New data on dehydration of α-cyclodextrin hexahydrate. J Chem Thermodyn 101:251–259. https://doi.org/10.1016/j.jct.2016.06.008
Meier MM, Luiz MTB, Szpoganicz B, Soldi V (2001) Thermal analysis behavior of β- and γ-cyclodextrin inclusion complexes with capric and caprilic acid. Thermochim Acta 375:153–160. https://doi.org/10.1016/S0040-6031(01)00514-7
Meisel T (1982) Review on problems, techniques and trends in thermal analysis. Fresenius J Anal Chem 312:83–95. https://doi.org/10.1007/BF00467720
Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, Medeiros IA, Marchioro M, Fraga BP, Santos MRV, Araújo AAS (2012) Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta 548:45–50. https://doi.org/10.1016/j.tca.2012.08.023
Menezes PP, Serafini MR, Quintans-Jr LJ, Silva GF, Oliveira JF, Carvalho FMS, Souza JCC, Matos JR, Alves PB, Matos IL, Hădărugă DI, Araújo AAS (2014) Inclusion complex of (-)-linalool and β-cyclodextrin. J Therm Anal Calorim 115(3):2429–2437. https://doi.org/10.1007/s10973-013-3367-x
Menezes PP, Serafini MR, de Carvalho YMBG, Santana DVS, Lima BS, Quintans-Jr LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Jr S, Araújo AAS (2016) Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. J Mol Struct 1125:323–330. https://doi.org/10.1016/j.molstruc.2016.06.062
Menezes PP, dos Santos PBP, Azevedo Dória GA, de Sousa BMH, Serafini MR, Nunes PS, Quintans-Jr LJ, de Matos IL, Alves PB, Bezerra DP, Mendonça FJB Jr, da Silva GF, de Aquino TM, de Souza Bento E, Scotti MT, Scotti L, Araújo AAS (2017) Molecular modeling and physicochemical properties of supramolecular complexes of limonene with α- and β-cyclodextrins. AAPS PharmSciTech 18(1):49–57. https://doi.org/10.1208/s12249-016-0516-0
Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci S Sens Food Qual 73(1):S89–S94. https://doi.org/10.1111/j.1750-3841.2007.00609.x
Muñoz-Ruiz A, Paronen P (1997) Particle and powder properties of cyclodextrins. Int J Pharm 148:33–39. https://doi.org/10.1016/S0378-5173(96)04820-X
Mura P (2015) Analytical techniques for characterization of cyclodextrin complexesin the solid state: a review. J Pharm Biomed Anal 113:226–238. https://doi.org/10.1016/j.jpba.2015.01.058
Neoh TL, Yamauchi K, Yoshii H, Furuta T (2008) Kinetic study of thermally stimulated dissociation of inclusion complex of 1-methylcyclopropene with α-cyclodextrin by thermal analysis. J Phys Chem B 112:15914–15920. https://doi.org/10.1021/jp806233c
Novák C, Éhen Z, Fodor M, Jicsinszky L, Orgoványi J (2006) Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. J Therm Anal Calorim 84:693–701. https://doi.org/10.1007/s10973-005-7605-8
Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42:1178–1185. https://doi.org/10.1016/j.foodres.2009.06.006
Ozawa T (2000) Thermal analysis - review and prospect. Thermochim Acta 355:35–42. https://doi.org/10.1016/S0040-6031(00)00435-4
Paczkowska M, Mizera M, Szymanowska-Powałowska D, Lewandowska K, Błaszczak W, Gościańska J, Pietrzak R, Cielecka-Piontek J (2016) β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur J Pharm Biopharm 99:24–34. https://doi.org/10.1016/j.ejpb.2015.10.013
Partanen R, Ahro M, Hakala M, Kallio H, Forssell P (2002) Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur Food Res Technol 214:242–247. https://doi.org/10.1007/s00217-001-0446-1
Pereva S, Sarafska T, Bogdanova S, Spassov T (2016) Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. J Drug Deliv Sci Technol 35:34–39. https://doi.org/10.1016/j.jddst.2016.04.006
Ponce Cevallos PA, del Pilar Buera M, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 34:333–339. https://doi.org/10.1016/S0731-7085(03)00529-6
Rossel CvP, Carreño JS, Rodríguez-Baeza M, Alderete JB (2000) Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase. Quím Nova 23(6):749–752. https://doi.org/10.1590/S0100-40422000000600007
Rudrangi SRS, Kaialy W, Ghori MU, Trivedi V, Snowden MJ, Alexander BD (2016) Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process. Eur J Pharm Biopharm 104:164–170. https://doi.org/10.1016/j.ejpb.2016.04.024
Şamlı M, Bayraktar O, Korel F (2014) Characterization of silk fibroin based films loaded with rutin–β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 80(1):37–49. https://doi.org/10.1007/s10847-014-0396-4
Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol 60:583–592. https://doi.org/10.1016/j.lwt.2014.08.046
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Jr LJ (2016) Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. Phytomedicine 23:948–957. https://doi.org/10.1016/j.phymed.2016.06.007
Sapino S, Carlotti ME, Caron G, Ugazio E, Cavalli R (2009) In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 63:171–180. https://doi.org/10.1007/s10847-008-9504-7
Sapte S, Pore Y (2016) Inclusion complexes of cefuroxime axetil with β-cyclodextrin: physicochemical characterization, molecular modeling and effect of l-arginine on complexation. J Pharm Anal 6:300–306. https://doi.org/10.1016/j.jpha.2016.03.004
Sathigari S, Chadha G, Lee Y-HP, Wright N, Parsons DL, Rangari VK, Fasina O, Babu RJ (2009) Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. AAPS PharmSciTech 10(1):81–87. https://doi.org/10.1208/s12249-008-9180-3
Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355. https://doi.org/10.1007/s10847-011-9985-7
Sreenivasan K (2001) Use of differential scanning calorimetry to study the replacement of a guest molecule from cyclodextrin-guest inclusion complexes. Anal Lett 34(2):307–311. https://doi.org/10.1081/AL-100001581
Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76(10):1825–1845. https://doi.org/10.1351/pac200476101825
Szente L, Szejtli J, Szemán J, Kató L (1993) Fatty acid-cyclodextrin complexes: properties and applications. J Incl Phenom Mol Recognit Chem 16:339–354. https://doi.org/10.1007/BF00708714
Tan J, Meng N, Fan Y, Su Y, Zhang M, Xiao Y, Zhou N (2016) Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: carriers for anti-cancer drugs. Mater Sci Eng C 61:681–687. https://doi.org/10.1016/j.msec.2015.12.098
Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci Technol 59:247–255. https://doi.org/10.1016/j.lwt.2014.05.037
Teramoto Y (1990) Thermal analysis—as a method of material characterization: a review. Anal Sci 6:635–643. https://doi.org/10.2116/analsci.6.635
Thiry J, Krier F, Ratwatte S, Thomassin J-M, Jerome C, Evrard B (2017) Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci 96:590–597. https://doi.org/10.1016/j.ejps.2016.09.032
Todorova NA, Schwarz FP (2007) The role of water in the thermodynamics of drug binding to cyclodextrin. J Chem Thermodyn 39:1038–1048. https://doi.org/10.1016/j.jct.2006.12.019
Ünlüsayin M, Hădărugă NG, Rusu G, Gruia AT, Păunescu V, Hădărugă DI (2016) Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. LWT Food Sci Technol 68:135–144. https://doi.org/10.1016/j.lwt.2015.12.017
Veiga MD, Merino M (2002) Interactions of oxyphenbutazone with different cyclodextrins in aqueous medium and in the solid state. J Pharm Biomed Anal 28:973–982. https://doi.org/10.1016/S0731-7085(02)00042-0
Wang Z, Zhang X, Deng Y, Wang T (2007) Complexation of hydrophobic drugs with hydroxypropyl-β-cyclodextrin by lyophilization using a tertiary butyl alcohol system. J Incl Phenom Macrocycl Chem 57:349–354. https://doi.org/10.1007/s10847-006-9261-4
Wang J, Cao Y, Sun B, Wang C (2011a) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127:1680–1685. https://doi.org/10.1016/j.foodchem.2011.02.036
Wang T, Li B, Si H, Lin L, Chen L (2011b) Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 71:207–213. https://doi.org/10.1007/s10847-011-9928-3
Wang L, Yan J, Li Y, Xu K, Li S, Tang P, Li H (2016) The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J Pharm Biomed Anal 117:453–463. https://doi.org/10.1016/j.jpba.2015.09.033
Wszelaka-Rylik M (2017) Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim 127:1825–1834. https://doi.org/10.1007/s10973-016-5467-x
Wunderlich B (2007) Thermal analysis of macromolecules. J Therm Anal Calorim 89(2):321–356. https://doi.org/10.1007/s10973-006-8219-5
Yuan C, Liu B, Liu H (2015) Characterization of hydroxypropyl-β-cyclodextrins with different substitution patterns via FTIR, GC-MS, and TG-DTA. Carbohydr Polym 118:36–40. https://doi.org/10.1016/j.carbpol.2014.10.070
Zhang J-Q, Jiang K-M, Xie X-G, Jin Y, Lin J (2016) Water-soluble inclusion complexes of trans-polydatin by cyclodextrin complexation: preparation, characterization and bioactivity evaluation. J Mol Liq 219:592–598. https://doi.org/10.1016/j.molliq.2016.03.054
Zhou Q, Wei X, Dou W, Chou G, Wang Z (2013) Preparation and characterization of inclusion complexes formed between baicalein and cyclodextrins. Carbohydr Polym 95:733–739. https://doi.org/10.1016/j.carbpol.2013.02.038