A review on the thermal stability of calcium apatites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pan Y, Fleet ME. Compositions of the apatite group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. 2002. p. 13–50.
Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ. Nomenclature of the apatite supergroup minerals. Eur J Mineral. 2010;22:163–79.
Elliott J. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.
Kanazawa T. Inorganic phosphates materialls. Tokyo: Kodansha Ltd. and Elsevier; 1989.
Gross KA, Berndt CC. Biomedical application of apatites. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:631–72.
Veiderma M. Studies on thermochemistry and thermal processing of apatite. Proc Estonian Acad Sci Chem. 2000;49:5–18.
Elliott JC. Calcium phosphate biominerals. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:427–54.
Piccoli P, Candela P. Apatite in igneous systems. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. Washington: Mineralogical Society of America; 2002. p. 255–92.
Cisse L, Mrabet T. World phosphate production: overview and prospects. Phosphorus Research Bulletin: Casablanca; 2004. p. 21–25.
Jasinski SM. Phosphate rock. In: Mineral Commodity Summaries. Washington, DC: U.S. Geological Survey; 2011. p. 118–9.
Marshall HL, Reynolds DS, Jacob KD, Tremearne TH. Phosphate fertilizers by calcination process. Ind Eng Chem. 1937;29:1294–8.
Volfkovich SI, Veiderma M. The progress of hydrothermal processing of phosphate rock. In: Technical-economic conference. ISMA, Fertliser Techn Orlando: Orlando; 1978. p. 49–62.
Veiderma M, Knubovets R, Tõnsuaadu K. Fluorhydroxyapatites of Northern Europe and their thermal transformations. Phosphorus Sulfur Silicon Relat Elem. 1996;109:43–6.
Veiderma M, Pyldme M, Tynsuaadu K. Thermische entfluorierung of apatit. Chein Techn. 1988;40:169–72.
Sneddon IR, Orueetxebarria M, Hodson ME, Schofield PF, Valsami-Jones E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environ Pollut. 2006;144:816–25.
Lazic S, Zec S, Miljevic N, Milonjic S. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim Acta. 2001;374:13–22.
Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009;44:2343–87.
Gross KA, Berndt CC, Stephens P, Dinnebier R. Oxyapatite in hydroxyapatite coatings. J Mater Sci. 1998;33:3985–91.
Zyman Z, Ivanov I, Rochmistrov D, Glushko V, Tkachenko N, Kijko S. Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J Biomedical Mater Res. 2001;54:256–63.
Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK. Sintering effects on the strength of hydroxyapatite. Biomater. 1995;16:409–15.
Haines P. Thermal methods of analysis. Principles, applications and problems. London: Blackie Academic & Professional; 1995.
Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B. 2010;405:4256–61.
Wallaeys R. Contribution a l’etude des apatits phosphocalciques. Ann Chim. 1952;7:808–48.
Tanaka H, Chikazawa M, Kandori K, Ishikawa T. Influence of thermal treatment on the structure of calcium hydroxyapatite. Phys Chem Chem Phys. 2000;2:2647–50.
Dzyuba ED, Sokolov TM, Valyukevich PL. Thermal stability of calcium phosphates. Izvestiya Akad Nauk SSSR Neorg Mater. 1982;18:107–10 (In russian).
Prener JS. The growth and crystallographic properties of calcium fluor- and chlorapatite crystals. J Electrochem Soc. 1967;114:77–83.
Surendran R, Chinnakali K. Preparation and characterisation of fluorapatite whiskers. Cryst Res Technol. 2008;43:490–5.
Demnanti I, Grossin D, Combes C, Rey C, Parco M, Fagoaga I, Barykin G, Braceras I. Hydroxyapatite and chlorapatite. Thin coatings obtained by a novel plasma mini-torch process. In: 5th forum on new materials. Nantes; 2010, p. FL-1–L-14.
Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc. 2007;27:2287–94.
García-Tuñón E, Franco J, Dacuña B, Zaragoza G, Guitián F. Chlorapatite conversion to hydroxyapatite under high temperature hydrothermal conditions. Mater Sci Forum. 2010;636–637:9–14.
Liao C-J, Lin F-H, Chen K-S, Sun J-S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomater. 1999;20:1807–13.
Park HC, Baek DJ, Park YM, Yoon SY, Stevens R. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci. 2004;39:2531–4.
Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–8.
Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.
Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir. 2009;25:2188–98.
Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C. 2010;114:16640–8.
Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci. 1993;4:150–8.
Chen Y, Miao X. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomater. 2005;26:1205–10.
White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite -carbon nanotube composites. J R Soc Interface. 2010;7:S529–39.
Bredig MA, Frank HH, Füldner H. Beiträge zur kenntnis der kalk-phosphorsäure-verbindungen II. Z Elektrochem. 1933;39:959–69.
Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice–I on the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem. 1978;40:15–21.
Cihlář J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 1999;34:6121–31.
Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.
Monma H, Kanazawa T. Effect of hydroxylation on the thermal reactivities of fluorapatite and chlorapatite. Bull Chem Soc Jpn. 1976;49:1421–2.
Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 1993;14:437–41.
Gross KA, Gross V, Berndt CC. Thermal analysis of amorphous phases in hydroxyapatite coatings. J Am Ceram Soc. 1998;81:106–12.
Chen J, Tong W, Yang C, Feng J, Zhang X. Efect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J Biomedical Mater Res. 1997;34:15–20.
Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.
McPherson R, Gane N, Bastow TJ. Structural characterization of plasma-sprayed hydroxylapatite coatings. J Mater Sci. 1995;6:327–34.
Yang C-W, Lui T-S. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 2009;5:2728–37.
Lin F-H, Chun-Jen L, Ko-Shao C, Jui-Sheng S. Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. Mater Sci Eng. 2000;13:97–104.
Shpak AP, Karbovskii VL, Trachevskii VV. Apatites, Kiev: Akademperiodika; 2002. (In Russian).
Park E, Condrate RA, Lee D, Kociba K, Gallagher PK. Characterization of hydroxyapatite: before and after plasma spraying. J Mater Sci. 2002;13:211–8.
DeGroot K, Klein C, Wolke J, De Blieck-Hogervorst J. Calcium phosphate and hydroxylapatite ceramics. Plasma-sprayed coatings of calcium phosphate. In: Yamamuro T, Hench LL, Wilson J, editors. CRC handbook of bioactive ceramics. Boca Raton: CRC Press; 1990. p. 133–42.
Wilson R, Elliott J, Dowker S, Rodriguez-Lorenzo L. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005;26:1317–27.
Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23:1065–72.
Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708.
Astala R, Stott MJ. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater. 2005;17:4125–33.
Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomedical Mater Res Part B. 2009;89B:508–17.
Kim KY, Shaver KJ. Calcination properties of precipitated basic calcium phosphates. J KIChE. 1973;11:336–48.
Pyldme M, Buzágh-Gere É, Pyldme J, Veiderma M. Thermal analysis of the interaction of phosphorite with condensed phosphates of calcium. J Therm Anal Calorim. 1976;10:195–204.
Nilen R, Richter P. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci. 2008;19:1693–702.
DeLeeuw NH. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem. 2010;20:5376–89.
Zyman Z, Rokhmistrov D, Glushko V, Ivanov I. Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite. J Mater Sci. 2009;20:1389–99.
Bonel G. Contribution à l’étude de la carbonation des apatites -1- Synthèse et étude des propriétés physico-chimiques des apatites carbonatées du type A. Ann Chim Fr. 1972;7:65–88.
Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x (PO4)6−x (CO3) x (OH)2−x−2y (CO3) y ceramics with controlled composition. J Eur Ceram Soc. 2008;28:139–47.
Tõnsuaadu K, Peld M, Leskelä T, Mannonen R, Niinistö L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.
Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744–747:221–8.
Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomater. 2004;25:987–94.
Lafon J, Champion E, Bernache-Assollant D, Gibert R, Danna A. Termal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.
Tõnsuaadu K, Peld M, Bender V. Thermal analysis of apatite structure. J Therm Anal Calorim. 2003;72:363–71.
Zhu Q, Wu J. Effect of initial carbonate content and heat treatments on preparation and properties of carbonated hydroxyapatite. J Chinese Ceramic Soc. 2007;35:866–70.
Zhu QX, Wu JQ. Investigation on heat treatment of carbonated hydroxyapatite. J Funct Mater. 2007;38:2055–8.
Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci. 2002;13:529–33.
Rau J, Cesaro SN, Ferro D, Barinov S, Fadeeva I. FTIR study of carbonate loss from carbonated apatites in the wide temperature range. J Biomed Mater Res Part B. 2004;71B:441–7.
Vignoles M, Bonel G, Bacquet G. Physicochemical study on phosphocalcium carbonated apatites similar to francolite. Bull Mineral. 1982;105:307–11.
Perdikatsis B. X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum. 1991;79–82:809–14.
McClellan G, Van Kauwenbergh S. Mineralogy of sedimentary apatites. In: Phosphorite research and development. London: Geological Society; 1990. p. 23–31.
Jemal M, Khattech I. Simultaneous thermogravimetry and gas chromatography during decomposition of carbonate apatites. Thermochim Acta. 1989;152:65–76.
Callens FJ, Verbeeck RMH, Naessens DE, Matthys PFA, Boesman ER. The effect of carbonate content and drying temperature on the ESR-spectrum near g = 2 of carbonated calciumapatites synthesized from aqueous media. Calcif Tissue Int. 1991;48:249–59.
Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36:313–22.
Tõnsuaadu K, Peld M, Quarton M, Bender V, Veiderma M. Studies on SO 4 2- ion incorporation into apatite structure. Phosphorus, Sulfur, Silicon Relat Elem. 2002;177:1873–6.
Khattech I, Jemal M. Décomposition thermique de fluorapatites carbonatées de type b “inverses”. Thermochim Acta. 1987;118:267–75.
Slósarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 2005;744–747:657–61.
Kannan S, Ventura JMG, Lemos AF, Barba A, Ferreira JMF. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int. 2008;34:7–13.
Leskiv M, Lagoa ALC, Urch H, Schwiertz J, Da Piedade Minas ME, Epple M. Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J Phys Chem C. 2009;113:5478–84.
Yasukawa A, Kandori K, Ishikawa T. TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calcif Tissue Int. 2003;72:243–50.
Hidouri M, Bouzouita K, Kooli F, Khattech I. Thermal behaviour of magnesium-containing fluorapatite. Mater Chem Phys. 2003;80:496–505.
Ren F, Leng Y, Xin R, Ge X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.
Marchi J, Dantas ACS, Greil P, Bressiani JC, Bressiani AHA, Müller FA. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater Res Bull. 2007;42:1040–50.
Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969–78.
Medveckż L, Stulajterovį R, Parilįk L, Trpcevskį J, Durisin J, Barinov SM. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Coll Surfaces A. 2006;281:221–9.
Paluszkiewicz C, Slósarczyk A, Pijocha D, Sitarz M, Bucko M, Zima A, Chróscicka A, Lewandowska-Szumiel M. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010;976:301–9.
Li MO, Xiao X, Liu R, Chen C, Huang L. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci. 2008;19:797–803.
Costa AM, Soares GA, Calixto R, Rossi AM. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:119–22.
Loher S, Stark WJ, Maciejewski M, Baiker A, Pratsinis SE, Reichardt D, Maspero F, Krumeich F, Günther D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater. 2004;17:36–42.
Riad M, Mikhail S. Zinc incorporated hydroxyapatite as catalysts for oxidative desulphurization process. Glob J Res in Eng. 2010;10:85–91.
Guerra-López J, Pomés R, Védova COD, Viña R, Punte G. Influence of nickel on hydroxyapatite crystallization. J Raman Spectrosc. 2001;32:255–61.
Bigi A, Gazzano M, Ripamonti A, Foresti E, Roveri N. Thermal stability of cadmium-calcium hydroxyapatite solid solutions. J Chem Soc Dalton Trans. 1986; 241–4.
Nounah A, Lacout JL. Thermal behavior of cadmium-containing apatites. J Solid State Chem. 1993;107:444–51.
Silva GWC, Hemmers O, Czerwinski KR, Lindle DW. Investigation of nanostructure and thermal behavior of zinc-substituted fluorapatite. Inorg Chem. 2008;47:7757–67.
Pasteris JD, Wopenkaa B, Freemana J, Rogersb K, Valsami-Jonesc E, van der Houwenc J, Silvad M. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–38.
Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 2000;26:599–602.
Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.
Shi J, Klocke A, Zhang M, Bismayer U. Thermal behavior of dental enamel and geologic apatite: An infrared spectroscopic study. Am Mineral. 2003;88:1866–71.
Shi J, Klocke A, Zhang M, Bismayer U. Thermally-induced structural modification of dental enamel apatite: decomposition and transformation of carbonate groups. Eur J Mineral. 2005;17:769–75.
Etok S, Valsami-Jones E, Wess T, Hiller J, Maxwell C, Rogers K, Manning D, White M, Lopez-Capel E, Collins M, Buckley M, Penkman K, Woodgate S. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807–16.
Rabelo JS, Ana PA, Benetti C, Valerio MEG, Zezell DM. Changes in dental enamel oven heated or irradiated with Er, Cr:YSGG laser. Analysis by FTIR. Laser Phys. 2010;20:871–5.
Barralet J, Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J Mater Sci. 2000; 19–24.
Onishi A, Thomas P, Stuart B, Guerbois J, Forbes S. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.