A review on the thermal stability of calcium apatites

Kaia Tõnsuaadu1, Kārlis Agris Gross2,3, Liene Plūduma2, Mihkel Veiderma1
1Laboratory of Inorganic Materials, Tallinn University of Technology, Tallinn, Estonia
2Riga Biomaterials Innovation and Development Centre, Riga Technical University, Riga, Latvia
3Department of Materials Engineering, Monash University, Melbourne, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pan Y, Fleet ME. Compositions of the apatite group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. 2002. p. 13–50.

Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ. Nomenclature of the apatite supergroup minerals. Eur J Mineral. 2010;22:163–79.

Elliott J. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

Kanazawa T. Inorganic phosphates materialls. Tokyo: Kodansha Ltd. and Elsevier; 1989.

Gross KA, Berndt CC. Biomedical application of apatites. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:631–72.

Veiderma M. Studies on thermochemistry and thermal processing of apatite. Proc Estonian Acad Sci Chem. 2000;49:5–18.

Elliott JC. Calcium phosphate biominerals. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:427–54.

LeGeros R. Calcium phosphates in oral biology and medicine. New York: Karger Publishing; 1991.

Piccoli P, Candela P. Apatite in igneous systems. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. Washington: Mineralogical Society of America; 2002. p. 255–92.

Cisse L, Mrabet T. World phosphate production: overview and prospects. Phosphorus Research Bulletin: Casablanca; 2004. p. 21–25.

Jasinski SM. Phosphate rock. In: Mineral Commodity Summaries. Washington, DC: U.S. Geological Survey; 2011. p. 118–9.

Marshall HL, Reynolds DS, Jacob KD, Tremearne TH. Phosphate fertilizers by calcination process. Ind Eng Chem. 1937;29:1294–8.

Volfkovich SI, Veiderma M. The progress of hydrothermal processing of phosphate rock. In: Technical-economic conference. ISMA, Fertliser Techn Orlando: Orlando; 1978. p. 49–62.

Veiderma M, Knubovets R, Tõnsuaadu K. Fluorhydroxyapatites of Northern Europe and their thermal transformations. Phosphorus Sulfur Silicon Relat Elem. 1996;109:43–6.

Veiderma M, Pyldme M, Tynsuaadu K. Thermische entfluorierung of apatit. Chein Techn. 1988;40:169–72.

Sneddon IR, Orueetxebarria M, Hodson ME, Schofield PF, Valsami-Jones E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environ Pollut. 2006;144:816–25.

Lazic S, Zec S, Miljevic N, Milonjic S. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim Acta. 2001;374:13–22.

Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009;44:2343–87.

Gross KA, Berndt CC, Stephens P, Dinnebier R. Oxyapatite in hydroxyapatite coatings. J Mater Sci. 1998;33:3985–91.

Zyman Z, Ivanov I, Rochmistrov D, Glushko V, Tkachenko N, Kijko S. Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J Biomedical Mater Res. 2001;54:256–63.

Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK. Sintering effects on the strength of hydroxyapatite. Biomater. 1995;16:409–15.

Haines P. Thermal methods of analysis. Principles, applications and problems. London: Blackie Academic & Professional; 1995.

Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B. 2010;405:4256–61.

Wallaeys R. Contribution a l’etude des apatits phosphocalciques. Ann Chim. 1952;7:808–48.

Tanaka H, Chikazawa M, Kandori K, Ishikawa T. Influence of thermal treatment on the structure of calcium hydroxyapatite. Phys Chem Chem Phys. 2000;2:2647–50.

Dzyuba ED, Sokolov TM, Valyukevich PL. Thermal stability of calcium phosphates. Izvestiya Akad Nauk SSSR Neorg Mater. 1982;18:107–10 (In russian).

Prener JS. The growth and crystallographic properties of calcium fluor- and chlorapatite crystals. J Electrochem Soc. 1967;114:77–83.

Surendran R, Chinnakali K. Preparation and characterisation of fluorapatite whiskers. Cryst Res Technol. 2008;43:490–5.

Demnanti I, Grossin D, Combes C, Rey C, Parco M, Fagoaga I, Barykin G, Braceras I. Hydroxyapatite and chlorapatite. Thin coatings obtained by a novel plasma mini-torch process. In: 5th forum on new materials. Nantes; 2010, p. FL-1–L-14.

Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc. 2007;27:2287–94.

García-Tuñón E, Franco J, Dacuña B, Zaragoza G, Guitián F. Chlorapatite conversion to hydroxyapatite under high temperature hydrothermal conditions. Mater Sci Forum. 2010;636–637:9–14.

Liao C-J, Lin F-H, Chen K-S, Sun J-S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomater. 1999;20:1807–13.

Park HC, Baek DJ, Park YM, Yoon SY, Stevens R. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci. 2004;39:2531–4.

Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–8.

Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.

Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir. 2009;25:2188–98.

Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C. 2010;114:16640–8.

Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci. 1993;4:150–8.

Chen Y, Miao X. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomater. 2005;26:1205–10.

White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite -carbon nanotube composites. J R Soc Interface. 2010;7:S529–39.

Bredig MA, Frank HH, Füldner H. Beiträge zur kenntnis der kalk-phosphorsäure-verbindungen II. Z Elektrochem. 1933;39:959–69.

Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice–I on the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem. 1978;40:15–21.

Cihlář J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 1999;34:6121–31.

Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

Monma H, Kanazawa T. Effect of hydroxylation on the thermal reactivities of fluorapatite and chlorapatite. Bull Chem Soc Jpn. 1976;49:1421–2.

Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 1993;14:437–41.

Gross KA, Gross V, Berndt CC. Thermal analysis of amorphous phases in hydroxyapatite coatings. J Am Ceram Soc. 1998;81:106–12.

Chen J, Tong W, Yang C, Feng J, Zhang X. Efect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J Biomedical Mater Res. 1997;34:15–20.

Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.

McPherson R, Gane N, Bastow TJ. Structural characterization of plasma-sprayed hydroxylapatite coatings. J Mater Sci. 1995;6:327–34.

Yang C-W, Lui T-S. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 2009;5:2728–37.

Lin F-H, Chun-Jen L, Ko-Shao C, Jui-Sheng S. Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. Mater Sci Eng. 2000;13:97–104.

Shpak AP, Karbovskii VL, Trachevskii VV. Apatites, Kiev: Akademperiodika; 2002. (In Russian).

Park E, Condrate RA, Lee D, Kociba K, Gallagher PK. Characterization of hydroxyapatite: before and after plasma spraying. J Mater Sci. 2002;13:211–8.

DeGroot K, Klein C, Wolke J, De Blieck-Hogervorst J. Calcium phosphate and hydroxylapatite ceramics. Plasma-sprayed coatings of calcium phosphate. In: Yamamuro T, Hench LL, Wilson J, editors. CRC handbook of bioactive ceramics. Boca Raton: CRC Press; 1990. p. 133–42.

Wilson R, Elliott J, Dowker S, Rodriguez-Lorenzo L. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005;26:1317–27.

Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23:1065–72.

Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708.

Astala R, Stott MJ. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater. 2005;17:4125–33.

Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomedical Mater Res Part B. 2009;89B:508–17.

Kim KY, Shaver KJ. Calcination properties of precipitated basic calcium phosphates. J KIChE. 1973;11:336–48.

Pyldme M, Buzágh-Gere É, Pyldme J, Veiderma M. Thermal analysis of the interaction of phosphorite with condensed phosphates of calcium. J Therm Anal Calorim. 1976;10:195–204.

Nilen R, Richter P. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci. 2008;19:1693–702.

DeLeeuw NH. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem. 2010;20:5376–89.

Zyman Z, Rokhmistrov D, Glushko V, Ivanov I. Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite. J Mater Sci. 2009;20:1389–99.

Bonel G. Contribution à l’étude de la carbonation des apatites -1- Synthèse et étude des propriétés physico-chimiques des apatites carbonatées du type A. Ann Chim Fr. 1972;7:65–88.

Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x (PO4)6−x (CO3) x (OH)2−x−2y (CO3) y ceramics with controlled composition. J Eur Ceram Soc. 2008;28:139–47.

Tõnsuaadu K, Peld M, Leskelä T, Mannonen R, Niinistö L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.

Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744–747:221–8.

Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomater. 2004;25:987–94.

Lafon J, Champion E, Bernache-Assollant D, Gibert R, Danna A. Termal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.

Tõnsuaadu K, Peld M, Bender V. Thermal analysis of apatite structure. J Therm Anal Calorim. 2003;72:363–71.

Zhu Q, Wu J. Effect of initial carbonate content and heat treatments on preparation and properties of carbonated hydroxyapatite. J Chinese Ceramic Soc. 2007;35:866–70.

Zhu QX, Wu JQ. Investigation on heat treatment of carbonated hydroxyapatite. J Funct Mater. 2007;38:2055–8.

Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci. 2002;13:529–33.

Rau J, Cesaro SN, Ferro D, Barinov S, Fadeeva I. FTIR study of carbonate loss from carbonated apatites in the wide temperature range. J Biomed Mater Res Part B. 2004;71B:441–7.

Vignoles M, Bonel G, Bacquet G. Physicochemical study on phosphocalcium carbonated apatites similar to francolite. Bull Mineral. 1982;105:307–11.

Perdikatsis B. X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum. 1991;79–82:809–14.

McClellan G, Van Kauwenbergh S. Mineralogy of sedimentary apatites. In: Phosphorite research and development. London: Geological Society; 1990. p. 23–31.

Jemal M, Khattech I. Simultaneous thermogravimetry and gas chromatography during decomposition of carbonate apatites. Thermochim Acta. 1989;152:65–76.

Callens FJ, Verbeeck RMH, Naessens DE, Matthys PFA, Boesman ER. The effect of carbonate content and drying temperature on the ESR-spectrum near g = 2 of carbonated calciumapatites synthesized from aqueous media. Calcif Tissue Int. 1991;48:249–59.

Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36:313–22.

Tõnsuaadu K, Peld M, Quarton M, Bender V, Veiderma M. Studies on SO 4 2- ion incorporation into apatite structure. Phosphorus, Sulfur, Silicon Relat Elem. 2002;177:1873–6.

Khattech I, Jemal M. Décomposition thermique de fluorapatites carbonatées de type b “inverses”. Thermochim Acta. 1987;118:267–75.

Slósarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 2005;744–747:657–61.

Kannan S, Ventura JMG, Lemos AF, Barba A, Ferreira JMF. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int. 2008;34:7–13.

Leskiv M, Lagoa ALC, Urch H, Schwiertz J, Da Piedade Minas ME, Epple M. Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J Phys Chem C. 2009;113:5478–84.

Yasukawa A, Kandori K, Ishikawa T. TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calcif Tissue Int. 2003;72:243–50.

Hidouri M, Bouzouita K, Kooli F, Khattech I. Thermal behaviour of magnesium-containing fluorapatite. Mater Chem Phys. 2003;80:496–505.

Ren F, Leng Y, Xin R, Ge X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.

Marchi J, Dantas ACS, Greil P, Bressiani JC, Bressiani AHA, Müller FA. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater Res Bull. 2007;42:1040–50.

Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969–78.

Medveckż L, Stulajterovį R, Parilįk L, Trpcevskį J, Durisin J, Barinov SM. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Coll Surfaces A. 2006;281:221–9.

Paluszkiewicz C, Slósarczyk A, Pijocha D, Sitarz M, Bucko M, Zima A, Chróscicka A, Lewandowska-Szumiel M. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010;976:301–9.

Li MO, Xiao X, Liu R, Chen C, Huang L. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci. 2008;19:797–803.

Costa AM, Soares GA, Calixto R, Rossi AM. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:119–22.

Loher S, Stark WJ, Maciejewski M, Baiker A, Pratsinis SE, Reichardt D, Maspero F, Krumeich F, Günther D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater. 2004;17:36–42.

Riad M, Mikhail S. Zinc incorporated hydroxyapatite as catalysts for oxidative desulphurization process. Glob J Res in Eng. 2010;10:85–91.

Guerra-López J, Pomés R, Védova COD, Viña R, Punte G. Influence of nickel on hydroxyapatite crystallization. J Raman Spectrosc. 2001;32:255–61.

Bigi A, Gazzano M, Ripamonti A, Foresti E, Roveri N. Thermal stability of cadmium-calcium hydroxyapatite solid solutions. J Chem Soc Dalton Trans. 1986; 241–4.

Nounah A, Lacout JL. Thermal behavior of cadmium-containing apatites. J Solid State Chem. 1993;107:444–51.

Silva GWC, Hemmers O, Czerwinski KR, Lindle DW. Investigation of nanostructure and thermal behavior of zinc-substituted fluorapatite. Inorg Chem. 2008;47:7757–67.

Pasteris JD, Wopenkaa B, Freemana J, Rogersb K, Valsami-Jonesc E, van der Houwenc J, Silvad M. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–38.

Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 2000;26:599–602.

Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

Shi J, Klocke A, Zhang M, Bismayer U. Thermal behavior of dental enamel and geologic apatite: An infrared spectroscopic study. Am Mineral. 2003;88:1866–71.

Shi J, Klocke A, Zhang M, Bismayer U. Thermally-induced structural modification of dental enamel apatite: decomposition and transformation of carbonate groups. Eur J Mineral. 2005;17:769–75.

Etok S, Valsami-Jones E, Wess T, Hiller J, Maxwell C, Rogers K, Manning D, White M, Lopez-Capel E, Collins M, Buckley M, Penkman K, Woodgate S. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807–16.

Rabelo JS, Ana PA, Benetti C, Valerio MEG, Zezell DM. Changes in dental enamel oven heated or irradiated with Er, Cr:YSGG laser. Analysis by FTIR. Laser Phys. 2010;20:871–5.

Barralet J, Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J Mater Sci. 2000; 19–24.

Onishi A, Thomas P, Stuart B, Guerbois J, Forbes S. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.

Grossin D, Rollin-Martinet S, Estournčs C, Rossignol F, Champion E, Combes C, Rey C, Geoffroy C, Drouet C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomater. 2010;6:577–85.