A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors

Journal of Materiomics - Tập 7 - Trang 98-126 - 2021
Jiale Sun1, Chunju Xu1, Huiyu Chen1
1School of Materials Science and Engineering, North University of China, Taiyuan 030051, China

Tài liệu tham khảo

Holdren, 2007, Energy and sustainability, Science, 315, 737, 10.1126/science.1139792 Yang, 2011, Electrochemical energy storage for green grid, Chem Rev, 111, 3577, 10.1021/cr100290v Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat Chem, 7, 19, 10.1038/nchem.2085 Chen, 2017, Supercapacitor and supercapattery as emerging electrochemical energy stores, Int Mater Rev, 62, 173, 10.1080/09506608.2016.1240914 Long, 2011, Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes, MRS Bull, 36, 513, 10.1557/mrs.2011.137 Yan, 2014, Supercapacitors: recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816, 10.1002/aenm.201300816 Jiang, 2016, Nanostructured core-shell electrode materials for electrochemical capacitors, J Power Sources, 331, 408, 10.1016/j.jpowsour.2016.09.054 Wang, 2015, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Prog Mater Sci, 74, 51, 10.1016/j.pmatsci.2015.04.003 Simon, 2014, Where do batteries end and supercapacitors begin?, Science, 343, 1210, 10.1126/science.1249625 Wang, 2019, Boosting the cycling stability of transition metal compounds-based supercapacitors, Energy Stor. Mater., 16, 545, 10.1016/j.ensm.2018.09.007 Gogotsi, 2018, Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?, ACS Nano, 12, 2081, 10.1021/acsnano.8b01914 Forse, 2016, New perspectives on the charging mechanisms of supercapacitors, J Am Chem Soc, 138, 5731, 10.1021/jacs.6b02115 Wen, 2016, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices, Adv. Mater., 28, 4306, 10.1002/adma.201504225 Wang, 2016, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energy Environ Sci, 9, 729, 10.1039/C5EE03109E Lukatskaya, 2017, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2, 17105, 10.1038/nenergy.2017.105 Brousse, 2014, To be or Not to be Pseudocapacitive?, J Electrochem Soc, 162, 185 Hu, 2006, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett, 6, 2690, 10.1021/nl061576a Xie, 2013, Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template, Chem Commun, 49, 11092, 10.1039/c3cc46867d Zuo, 2017, Battery-supercapacitor hybrid devices: recent progress and future prospects, Adv Sci, 4, 1600539, 10.1002/advs.201600539 Chandra Sekhar, 2018, High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material, Nano Energy, 48, 81, 10.1016/j.nanoen.2018.03.037 Wu, 2014, NiCo2O4-based materials for electrochemical supercapacitors, J Mater Chem A, 2, 14759, 10.1039/C4TA02390K Xu, 2017, Synthesis and electrochemical properties of porous α-Co(OH)2 and Co3O4 microspheres, Prog Nat Sci, 27, 197, 10.1016/j.pnsc.2017.03.001 Pendashteh, 2015, Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors, Chem Mater, 27, 3919, 10.1021/acs.chemmater.5b00706 Nithya, 2016, Review on α-Fe2O3 based negative electrode for high performance supercapacitors, J Power Sources, 327, 297, 10.1016/j.jpowsour.2016.07.033 Bandgar, 2018, Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor, ACS Appl Energy Mater, 1, 638, 10.1021/acsaem.7b00163 Ma, 2015, Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries, J Mater Chem A, 12038, 10.1039/C5TA00890E Sun, 2017, 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium-oxygen batteries, Chem Commun, 53, 8711, 10.1039/C7CC02621H Pendashteh, 2014, Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors, Chem Commun, 50, 1972, 10.1039/c3cc48773c Luo, 2017, CuCo2O4 nanowire arrays supported on carbon cloth as an efficient 3D binder-free electrode for non-enzymatic glucose sensing, RSC Adv, 23093, 10.1039/C7RA01840A Jain, 2018, Room-temperature ammonia gas sensing using mixed-valent CuCo2O4 nanoplatelets: performance enhancement through stoichiometry control, ACS Omega, 3, 1977, 10.1021/acsomega.7b01958 Cui, 2018, Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: a novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell, Talanta, 3, 788, 10.1016/j.talanta.2017.09.074 Liu, 2014, Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries, Chem Commun, 14635, 10.1039/C4CC04682J Nekoeinia, 2018, Enhanced Fenton-like catalytic performance of N-doped graphene quantum dots incorporated CuCo2O4, New J Chem, 42, 9209, 10.1039/C8NJ00219C Angelov, 1982, The properties of a spinel copper cobaltite prepared at low temperatures and normal pressure, Mater Res Bull, 17, 235, 10.1016/0025-5408(82)90151-9 By, 2008, Cations distribution of CuxCo3-xO4 and its electrocatalytic activities for oxygen evolution reaction, Int J Hydrogen Energy, 33, 4763, 10.1016/j.ijhydene.2008.05.032 Alizadeh-Gheshlaghi, 2012, Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate, Powder Technol, 217, 330, 10.1016/j.powtec.2011.10.045 Vijayakumar, 2015, Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance, Electrochim Acta, 182, 979, 10.1016/j.electacta.2015.10.021 Kaverlavani, 2017, Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors, J Mater Chem A, 5, 14301, 10.1039/C7TA03943C BoopathiRaja, 2019, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications, Vacuum, 165, 96, 10.1016/j.vacuum.2019.04.013 Zhao, 2019, Effect of precursor on the morphology and supercapacitor performance of CuCo2O4, Int. J. Electrochem. Sci., 14, 3885, 10.20964/2019.04.62 Liao, 2017, Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors, J Alloys Compd, 695, 3503, 10.1016/j.jallcom.2016.12.004 Jin, 2018, Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors, Chem Eng J, 343, 331, 10.1016/j.cej.2018.02.117 Babu, 2019, Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode, Chem Eng J, 366, 390, 10.1016/j.cej.2019.02.108 Li, 2019, Self-templated formation of CuCo2O4 triple-shelled hollow microspheres for all-solid-state asymmetric supercapacitors, J Alloys Compd, 787, 694, 10.1016/j.jallcom.2019.02.134 Abbasi, 2018, Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors, Appl Surf Sci, 445, 272, 10.1016/j.apsusc.2018.03.193 Naik, 2016, Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications, Microporous Mesoporous Mater, 244, 226, 10.1016/j.micromeso.2016.10.036 Pawar, 2019, Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis, Appl Surf Sci, 470, 360, 10.1016/j.apsusc.2018.11.151 Saleki, 2019, MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors, J Colloid Interface Sci, 556, 83, 10.1016/j.jcis.2019.08.044 Ensafi, 2018, Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal–organic frameworks for high-performance asymmetric supercapacitor, J Mater Chem A, 6, 10497, 10.1039/C8TA02819B Kamari, 2016, Self-templated synthesis of uniform nanoporous CuCo2O4 double-shelled hollow microspheres for high-performance asymmetric supercapacitors, Chem Commun, 53, 1052, 10.1039/C6CC08888K Krishnan, 2015, Characterization of MgCo2O4 as an electrode for high performance supercapacitors, Electrochim Acta, 161, 312, 10.1016/j.electacta.2015.02.081 Silambarasan, 2016, Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties, Mater Res Express, 3, 10.1088/2053-1591/3/9/095021 Wang, 2015, Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors, RSC Adv, 5, 96448, 10.1039/C5RA21170K Das, 2018, Facile synthesis of porous CuCo2O4 composite sheets and their supercapacitive performance, Compos. Part. B-eng., 150, 234, 10.1016/j.compositesb.2018.05.028 Das, 2018, Facile synthesis of CuCo2O4 composite octahedrons for high performance supercapacitor application, Compos. Part. B-eng., 150, 269, 10.1016/j.compositesb.2018.07.021 Singu, 2019, Tunability of porous CuCo2O4 architectures as high-performance electrode materials for supercapacitors, ChemNanoMat, 5, 1398, 10.1002/cnma.201900480 Alqahtani, 2019, Effect of metal ion substitution on electrochemical properties of cobalt oxide, J Alloys Compd, 771, 951, 10.1016/j.jallcom.2018.09.014 Gu, 2015, CuCo2O4 nanowires grown on a Ni wire for high-performance, flexible fiber supercapacitors, ChemElectroChem, 2, 1042, 10.1002/celc.201500020 Wang, 2017, Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties, Nanomaterials, 7, 140, 10.3390/nano7060140 Zequine, 2019, Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage, J Alloys Compd, 784, 1, 10.1016/j.jallcom.2019.01.012 Qi, 2019, Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor, J Mater Sci: Mater Electron, 30, 9877 Lin, 2017, In situ encapsulated Fe3O4 nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors, J Mater Chem A, 5, 24594, 10.1039/C7TA07628B Chen, 2015, Grass-like CuCo2O4 nanowire arrays supported on nickel foam with high capacitances and desirable cycling performance, RSC Adv, 5, 70494, 10.1039/C5RA09962E Wang, 2018, Ordered corn-like CuCo2O4 nanoforests covering Ni foam for a high-performance all-solid-state supercapacitor, J Alloys Compd, 741, 527, 10.1016/j.jallcom.2018.01.168 Vijayakumar, 2017, CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications, Electrochim, Acta, 238, 99 Wang, 2017, Cedar leaf-like CuCo2O4 directly grow on nickel foam by a hydrothermal/annealing process as an electrode for a high-performance symmetric supercapacitor, J Alloys Compd, 735, 2046, 10.1016/j.jallcom.2017.12.005 Gao, 2019, Morphology-controllable synthesis of CuCo2O4 arrays on Ni foam as advanced electrodes for supercapacitors, J Alloys Compd, 789, 193, 10.1016/j.jallcom.2019.03.041 Liu, 2018, Effect of cation substitution on pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co), J Mater Chem A, 6, 10674, 10.1039/C8TA00540K Jadhav, 2016, Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage, Sci Rep, 6, 31120, 10.1038/srep31120 Liu, 2018, Hierarchical CuCo2O4 nanourchin supported by Ni foam with superior electrochemical performance, J Alloys Compd, 756, 68, 10.1016/j.jallcom.2018.05.026 Talha, 2018, Self-assembled nanostructured CuCo2O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering, Small, 14, 1870132, 10.1002/smll.201870132 Cheng, 2015, Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts, J Mater Chem A, 3, 9769, 10.1039/C5TA00408J Zhang, 2020, Rational rope-like CuCo2O4 nanosheets directly on Ni foam as multifunctional electrodes for supercapacitor and oxygen evolution reaction, J Alloys Compd, 826, 10.1016/j.jallcom.2020.153993 Lan, 2020, Dandelion-like CuCo2O4 arrays on Ni foam as advanced positive electrode material for high-performance hybrid supercapacitors, J Colloid Interface Sci, 566, 79, 10.1016/j.jcis.2020.01.077 Liu, 2016, Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors, ACS Appl Mater Interfaces, 8, 3258, 10.1021/acsami.5b11001 Yan, 2018, Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors, Appl Surf Sci, 439, 883, 10.1016/j.apsusc.2018.01.066 Liang, 2018, A high performance asymmetric supercapacitor based on in situ prepared CuCo2O4 nanowires and PPy nanoparticles on a two-ply carbon nanotube yarn, Dalton Trans, 47, 17146, 10.1039/C8DT03938K Li, 2018, CuCo2S4 nanosheets coupled with carbon nanotube heterostructures for highly efficient capacitive energy storage, ChemElectroChem, 5, 2496, 10.1002/celc.201800329 Liang, 2018, Controlled synthesis of ordered sandwich CuCo2O4/reduced graphene oxide composites via layer-by-layer heteroassembly for high-performance supercapacitors, Chem Eng J, 350, 627, 10.1016/j.cej.2018.06.021 Wei, 2018, Rational design of Co(II) dominant and oxygen vacancy defective CuCo2O4@CQDs hollow spheres for enhanced overall water splitting and supercapacitor performance, Inorg Chem, 57, 7380, 10.1021/acs.inorgchem.8b01020 Wei, 2018, Flexible asymmetric supercapacitors made of 3D porous hierarchical CuCo2O4@CQDs and Fe2O3@CQDs with enhanced performance, Electrochim Acta, 283, 248, 10.1016/j.electacta.2018.06.153 Wang, 2014, Core–shell CuCo2O4@MnO2 nanowires on carbon fabrics as high-performance materials for flexible, all-solid-state, electrochemical capacitors, ChemElectroChem, 1, 559, 10.1002/celc.201300084 Kuang, 2015, Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors, J Mater Chem A, 3, 21528, 10.1039/C5TA05957G Pang, 2018, Designed fabrication of three-dimensional δ-MnO2-cladded CuCo2O4 composites as an outstanding supercapacitor electrode material, New J Chem, 42, 19153, 10.1039/C8NJ03774D Huang, 2018, Nano-sized structurally highly disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors, ACS Nano, 12, 2753, 10.1021/acsnano.7b09062 Liu, 2016, Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors, J Mater Chem A, 4, 8061, 10.1039/C6TA00960C Chen, 2020, Growth of CuCo2O4@MnMoO4 core/shell nanosheet arrays for high energy density asymmetric supercapacitors, Electrochim Acta, 341, 135893, 10.1016/j.electacta.2020.135893 Zhan, 2017, Growth of highly mesoporous CuCo2O4 nanoflakes@ Ni(OH)2 nanosheets as advanced electrodes for high-performance hybrid supercapacitors, J Alloys Compd, 722, 928, 10.1016/j.jallcom.2017.06.193 Liu, 2019, Self-supported sisal-like CuCo2O4@Ni(OH)2 core-shell composites grown on Ni foam for high-performance all-solid state supercapacitors, Ind Eng Chem Res, 58, 21233, 10.1021/acs.iecr.9b04380 Zhu, 2019, Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage, J Colloid Interface Sci, 557, 76, 10.1016/j.jcis.2019.09.010 Wang, 2017, Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors, Sci Bull, 62, 1122, 10.1016/j.scib.2017.08.014 Zhang, 2015, Hierarchical CuCo2O4 nanowire@NiCo2O4 nanosheet core/shell arrays for high-performance supercapacitors, RSC Adv, 5, 69636, 10.1039/C5RA11007F Lin, 2017, Hierarchical CuCo2O4@NiMoO4 core-shell hybrid arrays as a battery-like electrode for supercapacitors, Inorg. Chem. Front., 4, 1575, 10.1039/C7QI00361G Li, 2020, Multidimensional and binary micro CuCo2O4/nano NiMoO4 for high performance supercapacitors, ACS Sustain Chem Eng, 8, 1687, 10.1021/acssuschemeng.9b07356 Qiu, 2017, Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors, J Mater Chem A, 5, 5820, 10.1039/C7TA00506G Xu, 2019, CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors, Chem Eng J, 369, 363, 10.1016/j.cej.2019.03.079 Merabet, 2018, Sol-gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels, Ceram Int, 44, 11265, 10.1016/j.ceramint.2018.03.171 Shanmugavani, 2016, Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors, Electrochim Acta, 188, 852, 10.1016/j.electacta.2015.12.077 Wang, 2016, Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors, J Mater Chem A, 4, 9977, 10.1039/C6TA02950G Mary, 2019, Incorporating Mn2+/Ni2+/Cu2+/Zn2+ in the Co3O4 nanorod: to investigate the effect of structural modification in the Co3O4 nanorod and its electrochemical performance, ChemistrySelect, 4, 160, 10.1002/slct.201803135 Gu, 2018, General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M= Mn, Fe, Ni, Cu and Zn), J Alloys Compd, 766, 796, 10.1016/j.jallcom.2018.07.002 Zhang, 2017, Engineering ultrathin Co(OH)2 nanosheets on dandelion-like CuCo2O4 microspheres for binder-free supercapacitors, ChemElectroChem, 4, 721, 10.1002/celc.201600661 Xie, 2018, CoMoO4 nanoplates decorated CuCo2O4 nanowires as advanced electrodes for high-performance hybrid supercapacitors, Mater Lett, 226, 30, 10.1016/j.matlet.2018.05.017 Zhang, 2017, Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for high-performance supercapacitors, RSC Adv, 7, 3983, 10.1039/C6RA25970G Li, 2015, Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors, ACS Appl Mater Interfaces, 7, 19316, 10.1021/acsami.5b05400 Xu, 2018, Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors, J Power Sources, 400, 96, 10.1016/j.jpowsour.2018.08.012 Zhang, 2020, Ni-Co-S nanosheets supported by CuCo2O4 nanowires for ultra-high capacitance hybrid supercapacitor electrode, Int J Hydrogen Energy, 45, 4784, 10.1016/j.ijhydene.2019.12.032 Omar, 2017, Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application, Electrochim Acta, 227, 41, 10.1016/j.electacta.2017.01.006 BoopathiRaja, 2020, Design and fabrication of hierarchical heterostructure CuCo2O4@PPy based asymmetric device with ultra high capacitance and attractive cycling performance, Mater Res Bull, 126, 110817, 10.1016/j.materresbull.2020.110817 Cheng, 2020, When Al3+ meets CuCo2O4 nanowire arrays: an enhanced positive electrode for energy storage devices, J Alloys Compd, 834, 155001, 10.1016/j.jallcom.2020.155001 Basu, 2016, A robust highly flexible all-solid-state micro pseudocapacitor based on ternary oxide CuCo2O4 having ultrathin porous nanowall type morphology blended with CNT, ChemistrySelect, 1, 5159, 10.1002/slct.201601348 Li, 2019, Facile synthesis of mesoporous CuCo2O4 nanorods@MnO2 with core-shell structure grown on RGO for high-performance supercapacitor, Mater Lett, 249, 151, 10.1016/j.matlet.2019.04.043 Wen, 2018, Full synergistic effect of hydrothermal NiCo2O4 nanosheets/CuCo2O4 nanocones supported on Ni foam for high-performance asymmetric supercapacitors, J Solid State Chem, 262, 327, 10.1016/j.jssc.2018.03.023 Zhang, 2019, NiCo2S4 nanosheet-modified hollow Cu-Co-O nanocomposites as asymmetric supercapacitor advanced electrodes with excellent performance, Appl Surf Sci, 497, 143725, 10.1016/j.apsusc.2019.143725 Vadiyar, 2019, Highly porous silver dendrites on carbon nanotube wrapped copper cobaltite nano-flowers for boosting energy density and cycle stability of asymmetric supercapattery, J Power Sources, 415, 154, 10.1016/j.jpowsour.2019.01.053 Zhang, 2020, Engineering RuO2 on CuCo2O4/CuO nanoneedles as multifunctional electrodes for the hybrid supercapacitors and water oxidation catalysis, J Alloys Compd, 832, 154962, 10.1016/j.jallcom.2020.154962