A review on synchrophasor communication system: communication technologies, standards and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pourbeik, P., Kundur, P. S., & Taylor, C. W. (2006). The anatomy of a power grid blackout - root causes and dynamics of recent major blackouts. IEEE Power and Energy Magazine, 4(5), 22–29.
Phadke, A. G. (2008). The wide world of wide-area measurement. IEEE Power and Energy Magazine, 6(5), 52–65.
Phadke, A. G., & Thorp, J. S. (2008). Synchronized phasor measurements and their applications. New York: Springer.
Report of the Task Force on Communication System in Power Sector. (2016). New Delhi: Central Electricity Regulation Commission. http://www.cercind.gov.in/2016/whatsnew/RTF.pdf .
Mohanta, D. K., Cherukuri, M., & Roy, D. S. (2016). A brief review of phasor measurement units as sensors for smart grid. Electric Power Components & Systems, 44(4), 411–425.
Murthy, C., Varma, K. A., Roy, D. S., & Mohanta, D. K. (2014). Reliability evaluation of phasor measurement unit using Type-2 fuzzy set theory. IEEE Systems Journal, 8(4), 1302–1309.
Zurawski, R. (2007). From wireline to wireless networks and technologies. IEEE Transactions on Industrial Informatics, 3(2), 93–94.
Deng, Y., Lin, H., Phadke, A. G., Shukla, S., & Thorp, J. S. (2012). Networking technologies for wide-area measurement applications. In E. Hossain, Z. Han, & H. V. Poor (Eds.), Smart Grid Communications and Networking (pp. 205–233). Cambridge: Cambridge University Press.
Khan, R. H., & Khan, J. Y. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825–845.
Berger, L., Schwager, A., & Escudero-Garzás, J. (2013). Power line Communications for Smart Grid Applications. Journal of Electrical and Computer Engineering, 2013, 1–16.
Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.
Naduvathuparambil, B., Valenti, M. C., & Feliachi, A. (2002). Communication delays in wide area measurement systems. In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540) (pp. 118–122).
IEEE Std 1344TM-1995. IEEE Standard for Synchrophasors for Power Systems.
IEEE Std C37.118TM-2005. IEEE Standard for Synchrophasors for Power Systems.
IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005). IEEE Standard for Synchrophasor Measurements for Power Systems.
Martin, K. E., et al. (2015). Synchrophasor measurements under the IEEE standard C37.118.1-2011 with amendment C37.118.1a. IEEE Transactions on Power Delivery, 30(3), 1514–1522.
IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005). IEEE Standard for Synchrophasor Data Transfer for Power Systems.
Martin, K. E., et al. (2014). An overview of the IEEE standard C37.118.2 - Synchrophasor data transfer for power systems. IEEE Transactions on Smart Grid, 5(4), 1980–1984.
Phadke, A. G., & Thorp, J. S. (2010). Communication needs for wide area measurement applications. In 5th International Conference on Critical Infrastructure, CRIS 2010 - Proceedings.
Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., & Mili, L. (2012). A study of communication and power system infrastructure interdependence on PMU-based wide area monitoring and protection. In IEEE Power and Energy Society General Meeting.
Yang, B., Wei, L., Zhan, Z., Li, Y., Jiang, Q., & Qi, J. (2015). Analysis on the characteristics of communication delay in wide area measuring system based on probability distribution. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 39(12), 38–43 and 55.
Nordström, L., Chenine, M., Zhu, K., & Vanfretti, L. (2011). Information and communication system architectures for wide-area monitoring and control applications. In 17th Power Systems Computation Conference, PSCC 2011.
Chenine, M., & Nordström, L. (2010). Performance considerations in Wide Area Monitoring and Control Systems. In 43rd International Conference on Large High Voltage Electric Systems, CIGRE 2010.
Chenine, M., Zhu, K., & Nordström, L. (2009). Survey on priorities and communication requirements for PMU-based applications in the nordic region. In 2009 IEEE Bucharest PowerTech: Innovative ideas toward the electrical grid of the future.
Pignati, M., et al. (2015). Real-time state estimation of the EPFL-campus medium-voltage grid by using PMUs. In IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2015.
Thomas, M. S., Senroy, N., & Rana, A. S. (2014). Analysis of time delay in a wide-area communication network. In Proceedings of 6th IEEE Power India International Conference, PIICON 2014.
Babazadeh, D., Chenine, M., Zhu, K., Nordstrom, L., & Al-Hammouri, A. (2013). A platform for wide area monitoring and control system ICT analysis and development. In IEEE Grenoble Conference PowerTech, POWERTECH 2013.
Zhu, K., Chenine, M., Nordström, L., Holmström, S., & Ericsson, G. (2013). An empirical study of synchrophasor communication delay in a utility TCP/IP network. International Journal of Emerging Electric Power Systems, 14(4), 341–350.
Chenine, M., Al Khatib, I., Ivanovski, J., Maden, V., & Nordström, L. (2010). PMU traffic shaping in IP-based wide area communication. In 5th International Conference on Critical Infrastructure, CRIS 2010 - Proceedings.
Chuang, C.-L., Jiang, J.-A., Wang, Y.-C., Chen, C.-P., & Hsiao, Y.-T. (2007). An adaptive PMU-based fault location estimation system with a fault-tolerance and load-balancing communication network. In IEEE Lausanne POWERTECH, Proceedings (pp. 1197–1202).
Radovanovic, A. (2001). Using the internet in networking of synchronized phasor measurement units. International Journal of Electrical Power & Energy Systems, 23(3), 245–250.
Ji, K., Wang, K.-Y., & Cai, Z.-X. (2005). Communication scheme of phasor measurement unit in WAMS. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 29(3), 77–80.
Rajput, V. S., Rovnyak, S. M., Koskie, S., & Sheng, Y. (2008). A microcontroller-based phasor measurement system with CAN bus communication. In IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES.
Asprou, M., Kyriakides, E., Dumitrescu, A.-M., & Albu, M. (2016). The impact of PMU measurement delays and a heterogenous communication network on a linear state estimator. In Proceedings of the 18th Mediterranean Electrotechnical Conference: Intelligent and Efficient Technologies and Services for the Citizen, MELECON 2016.
Balasubramaniam, K., Luitel, B., & Venayagamoorthy, G. K. (2012). A scalable wide area monitoring system using cellular neural networks. In Proceedings of the International Joint Conference on Neural Networks.
Awad, A., Moarrab, S., & German, R. (2015). QoS implementation inside LTE networks to support time-critical smart grid applications. In IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings (pp. 1204–1209).
Yan, D.-J., Ju, P., & Yuan, H. (2004). Wide area measurement and real-time transmission system for phasor data under network communication mode. Power System Technology, 28(4), 15–18.
Xu, T., Yin, X., You, D., Li, Y., & Wang, Y. (2008). A novel communication network for three-level wide area protection system. In IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES.
Wang, Z. J., & Wang, Y. W. (2014). Research on the anti-grade trip system in coal mine high-voltage grid based on WAMS. In Information Technology and Computer Application Engineering - Proceedings of the 2013 International Conference on Information Technology and Computer Application Engineering, ITCAE 2013 (pp. 695–697).
Meloni, A., Pegoraro, P. A., Atzori, L., Castello, P., & Sulis, S. (2016). IoT cloud-based distribution system state estimation: Virtual objects and context-awareness. In IEEE International Conference on Communications, ICC 2016.
Deng, Y., Lin, H., Phadke, A. G., Shukla, S., Thorp, J. S., & Mili, L. (2012). Communication network modeling and simulation for wide area measurement applications. In IEEE PES Innovative Smart Grid Technologies, ISGT 2012.
Xin, Y., & Chakrabortty, A. (2013). A study on group communication in distributed wide-area measurement system networks in large power systems. In IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings (pp. 543–546).
Korres, G. N., Tzavellas, A., & Galinas, E. (2013). A distributed implementation of multi-area power system state estimation on a cluster of computers. Electric Power Systems Research, 102, 20–32.
Yan, C., Wu, J., & Yang, Q. (2004). Investigation on the distributed dynamic phasor monitoring system. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 28(18), 50–53.
Nabavi, S., Zhang, J., & Chakrabortty, A. (2015). Distributed optimization algorithms for wide-area oscillation monitoring in power systems using interregional PMU-PDC architectures. IEEE Transactions on Smart Grid, 6(5), 2529–2538.
Chenine, M., & Nordstrom, L. (2011). Modeling and simulation of wide-area communication for centralized PMU-based applications. IEEE Transactions on Power Delivery, 26(3), 1372–1380.
Chenine, M., & Nordström, L. (2009). Investigation of communication delays and data incompleteness in multi-PMU Wide Area Monitoring and Control Systems. In International Conference on Electric Power and Energy Conversion Systems, (EPECS) (pp. 1–6). Sharjah: IEEE.
Georg, H., Wietfeld, C., Muller, S. C., & Rehtanz, C. (2012). A HLA based simulator architecture for co-simulating ICT based power system control and protection systems. In IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012 (pp. 264–269).
Adewole, A. C., & Tzoneva, R. (2017). Co-simulation platform for integrated real-time power system emulation and wide area communication. IET Generation, Transmission and Distribution, 11(12), 3019–3029.
Liu, W.-X., Liu, N., Fan, Y.-F., Zhang, L.-X., & Zhang, X. (2009). Reliability analysis of wide area measurement system based on the centralized distributed model. In IEEE/PES Power Systems Conference and Exposition, PSCE 2009.
Zhao, X., Lu, J., Wang, Y., Peng, J., He, F., & Wei, H. (2009). Reliability assessment of WAMS based on a combined hardware and software probability model of phasor measurement units. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 33(16), 19–23.
Goutard, E., Rudolph, T., & Mesbah, M. (2010). Impact of communication network impairments on Wide Area Monitoring, Control and Protection applications in the IEC61850 environment. In 43rd International Conference on Large High Voltage Electric Systems 2010, CIGRE 2010.
Asprou, M., Hadjiantonis, A. M., Ciornei, I., Milis, G., & Kyriakides, E. (2012). On the complexities of interdependent infrastructures for wide area monitoring systems. In IEEE Workshop on Complexity in Engineering, COMPENG 2012 - Proceedings (pp. 1–6).
Menike, S., Yahampath, P., Rajapakse, A., & Alfa, A. (2013). Queuing-theoretic modeling of a PMU communication network. In IEEE Power and Energy Society General Meeting.
Fesharaki, F. H., Hooshmand, R. A., & Khodabakhshian, A. (2013). A new method for simultaneous optimal placement of PMUs and PDCs for maximizing data transmission reliability along with providing the power system observability. Electric Power Systems Research, 100, 43–54.
Li, J., Zhang, A., Zhang, H., Liu, X., Geng, Y., & Wei, Y. (2015). Reliability evaluation of the wide area protect system. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 30(12), 344–350.
Sodhi, R., & Sharieff, M. I. (2015). Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Generation, Transmission and Distribution, 9(2), 172–182.
Castello, P., Ferrari, P., Flammini, A., Muscas, C., Pegoraro, P. A., & Rinaldi, S. (2015). A distributed PMU for electrical substations with wireless redundant process bus. IEEE Transactions on Instrumentation and Measurement, 64(5), 1149–1157.
Rana, A. S., Thomas, M. S., & Senroy, N. (2017). Reliability evaluation of WAMS using Markov-based graph theory approach. IET Generation, Transmission and Distribution, 11(11), 2930–2937.
Gou, B. (2008). Optimal placement of PMUs by integer linear programming. IEEE Transactions on Power Systems, 283(3), 1525–1526.
Aminifar, F., Lucas, C., Khodaei, A., & Fotuhi-Firuzabad, M. (2009). Optimal placement of phasor measurement units using immunity genetic algorithm. IEEE Transactions on Power Delivery, 24(3), 1014–1020.
Hajian, M., Ranjbar, A. M., Amraee, T., & Mozafari, B. (2011). Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm. International Journal of Electrical Power & Energy Systems, 33(1), 28–34.
Peng, C., Sun, H., & Guo, J. (2010). Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm. International Journal of Electrical Power & Energy Systems, 32(8), 886–892.
More, K. K., & Jadhav, H. T. (2013). A literature review on optimal placement of phasor measurement units. In IEEE International Conference on Power, Energy and Control (ICPEC).
Dong, X., Lin, H., Tan, R., Iyer, R. K., & Kalbarczyk, Z. (2015). Software-defined networking for smart grid resilience: Opportunities and challenges. In Proc. 1st ACM Workshop Cyber Phys. Syst. Security (CPSS) (pp. 61–68).
Kanizo, Y., Hay, D., & Keslassy, I. (2013). Palette: Distributing tables in software-defined networks. In Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM) (pp. 545–549).
Meloni, A., et al. (2017). Bandwidth and accuracy-aware state estimation for smart grids using software defined networks. Energies, 10(7), 858–878.
Molina, E., et al. (2015). Using software defined networking to manage and control IEC 61850-based systems. Computers and Electrical Engineering, 43(1), 142–154.
Cahn, A., et al. (2013). Software-defined energy communication networks: From substation automation to future smart grids. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 558–563). Vancouver: IEEE.
Goodney, A., Kumar, S., Ravi, A., & Cho, Y. H. (2013). Efficient PMU networking with software defined networks. In Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm) (pp. 378–383).
Lin, H., et al. (2018). Self-healing attack-resilient PMU network for power system operation. IEEE Transactions on Smart Grid, 9(3), 1551–1565.
Golshani, M., Taylor, G. A., Pisica, I., & Ashton, P. M. (2015). Performance evaluation of MPLS-enabled communications infrastructure for wide area monitoring systems. IET Seminar Digest, 2015, 1–7.
Chuang, C.-L., Wang, Y.-C., Lee, C.-H., Liu, M.-Y., Hsiao, Y.-T., & Jiang, J.-A. (2010). An adaptive routing algorithm over packet switching networks for operation monitoring of power transmission systems. IEEE Transactions on Power Delivery, 25(2), 882–890.
Best, R. J., Morrow, D. J., Laverty, D. M., & Crossley, P. A. (2010). Synchrophasor broadcast over internet protocol for distributed generator synchronization. IEEE Transactions on Power Delivery, 25(4), 2835–2841.
Myrda, P. T., & Koellner, K. (2010). NASPInet - the internet for synchrophasors. In Proceedings of the Annual Hawaii International Conference on System Sciences.
Bhor, D., Angappan, K., & Sivalingam, K. M. (2014). A co-simulation framework for Smart Grid wide-area monitoring networks. In 6th International Conference on Communication Systems and Networks, COMSNETS 2014.
Bhor, D., Angappan, K., & Sivalingam, K. M. (2016). Network and power-grid co-simulation framework for Smart Grid wide-area monitoring networks. Journal of Network and Computer Applications, 59, 274–284.
Cherukuri, N., & Nahrstedt, K. (2011). Cooperative congestion control in power grid communication networks. In IEEE International Conference on Smart Grid Communications, SmartGridComm 2011 (pp. 587–592).
Qiu, M., Su, H., Chen, M., Ming, Z., & Yang, L. T. (2012). Balance of security strength and energy for a PMU monitoring system in smart grid. IEEE Communications Magazine, 50(5), 142–149.
Ambrosie, S., & Lupu, E. C. (2014). Measurements and data communication for a small hydropower plant connected to the national grid. UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 76(4), 85–96.
Kim, D.-Y., & Kim, Y.-C. (2015). Design and performance evaluation of hierarchical communication network for wide area measurement system. In International Conference on Smart Energy Grid Engineering, SEGE 2015.
Gharavi, H., & Hu, B. (2015). Scalable Synchrophasors communication network design and implementation for real-time distributed generation grid. IEEE Transactions on Smart Grid, 6(5), 2539–2550.
Zhu, K., Chenine, M., Nordström, L., Holmström, S., & Ericsson, G. (2014). Design requirements of wide-area damping systems - using empirical data from a utility IP network. IEEE Transactions on Smart Grid, 5(2), 829–838.
Xiaoyang, T., Guodong, L., Xiaoru, W., & Shan, Z. (2005). The analysis of communication architecture and control mode of wide area power systems control. In Proceedings - 2005 International symposium on autonomous decentralized systems, ISADS 2005 (Vol. 2005, pp. 59–65).
Anh, N. T., Vanfretti, L., Driesen, J., & Van Hertem, D. (2015). A quantitative method to determine ICT delay requirements for wide-area power system damping controllers. IEEE Transactions on Power Systems, 30(4), 2023–2030.
G.-L. Yu, B.-H. Zhang, H. Xie, C.-G. Wang, B.-G. Zou, and D.-P. Wang, “Design of a nonlinear robust integrated controller based on incomplete time-delay wide-area measurement information,” Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, vol. 27, no. 10. pp. 7–13, 2007.
Huaren, W., Qi, W., & Xiaohui, L. (2008). PMU-based wide area damping control of power systems. In Joint International Conference on Power System Technology POWERCON and IEEE Power India Conference, POWERCON 2008.
Fan, L. (2008). Synchronized global Phasor Measurement based inter-area oscillation control considering communication delay. In IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES.
Saejia, M., & Ngamroo, I. (2010). Wide area robust TCSC controller design considering communication delay uncertainty. In ECTI-CON 2010 - The 2010 ECTI International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 996–1000).
Zhu, K., & Nordström, L. (2014). Design of wide-area damping systems based on the capabilities of the supporting information communication technology infrastructure. IET Generation, Transmission and Distribution, 8(4), 640–650.
Chaudhuri, N. R., Chakraborty, D., & Chaudhuri, B. (2011). An architecture for FACTS controllers to deal with bandwidth-constrained communication. IEEE Transactions on Power Delivery, 26(1), 188–196.
Liu, J., Gusrialdi, A., Hirche, S., & Monti, A. (2011). Joint controller-communication topology design for distributed wide-area damping control of power systems. IFAC Proceedings Volumes (IFAC-PapersOnline), 18, 519–525.
Zhu, K., Rahimi, S., Nordström, L., & Zhang, B. (2015). Design phasor data concentrator as adaptive delay buffer for wide-area damping control. Electric Power Systems Research, 127, 22–31.
Wang, Y., Yemula, P., & Bose, A. (2015). Decentralized communication and control systems for power system operation. IEEE Transactions on Smart Grid, 6(2), 885–893.
Singh, V. P., Kishor, N., & Samuel, P. (2016). Communication time delay estimation for load frequency control in two-area power system. Ad Hoc Networks, 41, 69–85.
Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., & Shahidehpour, M. (2010). Contingency-constrained PMU placement in power networks. IEEE Transactions on Power Systems, 25(1), 516–523.
Miljanic, Z., Djurovic, I., & Vujoševic, I. (2013). Multiple channel PMU placement considering communication constraints. Energy Systems, 4(2), 125–135.
Tai, X., Marelli, D., Rohr, E., & Fu, M. (2011). Optimal PMU placement for power system state estimation with random communication packet losses. In IEEE International Conference on Control and Automation, ICCA (pp. 444–448).
Anees, M. A., & Rihan, M. (2014). Optimal placement of phasor measurement units considering communication unavailability. In IEEE International Workshop on Applied Measurements for Power Systems, AMPS 2014 - Proceedings (pp. 75–80).
Mahapatra, K., Nayak, M. R., & Rout, P. K. (2015). Multi-objective discrete artificial bee Colony based phasor measurement unit placement for complete and incomplete observability analysis (Vol. 308). Bhubaneswar: AISC.
Theodorakatos, N. P., Manousakis, N. M., & Korres, G. N. (2015). A sequential quadratic programming method for contingency-constrained phasor measurement unit placement. International Transactions on Electrical Energy Systems, 25(12), 3185–3211.
Theodorakatos, N. P., Manousakis, N. M., & Korres, G. N. (2015). Optimal placement of phasor measurement units with linear and non-linear models. Electric Power Components & Systems, 43(4), 357–373.
Gaber, A., Seddik, K. G., & Elezabi, A. Y. (2016). PMUs placement with max-flow min-cut communication constraint in smart grids. In IEEE Wireless Communications and Networking Conference, WCNC (Vol. 2016-September).
Shahraeini, M., Javidi, M. H., & Ghazizadeh, M. S. (2013). Communication infrastructure planning for wide area measurement systems in power systems. International Journal of Communication Networks and Distributed Systems, 10(4), 319–334.
Haghighatdar Fesharaki, F., Hooshmand, R.-A., & Khodabakhshian, A. (2014). Simultaneous optimal design of measurement and communication infrastructures in hierarchical structured WAMS. IEEE Transactions on Smart Grid, 5(1), 312–319.
Appasani, B., & Mohanta, D. K. (2018). A two-stage Markov model aided frequency duration approach for reliability analysis of PMU microwave communication networks. In Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. https://doi.org/10.1177/1748006X18785685 .
Ghosh, D., Ghose, T., & Mohanta, D. K. (2013). Communication feasibility analysis for smart grid with phasor measurement units. IEEE Transactions on Industrial Informatics, 9(3), 1486–1496.
Georges, D. (2014). Optimal PMU-based monitoring architecture design for power systems. Control Engineering Practice, 30, 150–159.
Mohammadi, M. B., Hooshmand, R.-A., & Fesharaki, F. H. (2016). A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS. IEEE Transactions on Smart Grid, 7(1), 84–93.
Shahraeini, M., Ghazizadeh, M. S., & Javidi, M. H. (2012). Co-optimal placement of measurement devices and their related communication infrastructure in wide area measurement systems. IEEE Transactions on Smart Grid, 3(2), 684–691.
Singh, S. P., & Singh, S. P. (2017). Optimal cost wide area measurement system incorporating communication infrastructure. IET Generation, Transmission and Distribution, 11(11), 2814–2821.
Sarailoo, M., & Wu, N. E. (2016). A new PMU placement algorithm to meet a specified synchrophasor availability. In IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2016.
Basetti, V., & Chandel, A. K. (2016). Simultaneous placement of PMUs and communication infrastructure in WAMS using NSGA-II. IETE Technical Review, 33(6), 621–637.
Appasani, B., & Mohanta, D. K. (2018). Co-optimal placement of PMUs and their communication infrastructure for minimization of propagation delay in the WAMS. IEEE Transactions on Industrial Informatics, 14(5), 2120–2132.