A review on sparse solutions in optimal control of partial differential equations

Eduardo Casas Rentería1
1Dpto. de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, Av. de los Castros s/n, 39005, Santander, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benilan, P., Brezis, H.: Nonlinear problems related to the Thomas-Fermi equation, dedicated to Philippe Benilan. J. Evol. Equ. 3, 673–770 (2004)

Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31(4), 993–1006 (1993)

Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997)

Casas, E.: Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50(4), 2355–2372 (2012)

Casas, E., Chrysafinos, K.: Analysis of the velocity tracking control problem for the 3d evolutionary navier–stokes equations. SIAM J. Control Optim. 54(1), 99–128 (2016)

Casas, E., Clason, C., Kunisch, K.: Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50(4), 1735–1752 (2012)

Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013)

Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear elliptic equations. In: Large-scale scientific computing, Lecture Notes in Comput. Sci., vol. 7116, pp. 16–27. Springer, Heidelberg (2012)

Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122, 645–669 (2012)

Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with $${L}^1$$ L 1 cost functional. SIAM J. Optim. 22(3), 795–820 (2012)

Casas, E., Herzog, R., Wachsmuth, G.: Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var. 23, 263–295 (2017)

Casas, E., Kunisch, K.: Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52(1), 339–364 (2013)

Casas, E., Kunisch, K.: Parabolic control problems in space-time measure spaces. ESAIM Control Optim. Calc. Var. 22(2), 355–370 (2016)

Casas, E., Ryll, C., Tröltzsch, F.: Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems. Comput. Methods Appl. Math. 13, 415–442 (2014)

Casas, E., Tröltzsch, F.: Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls. SIAM J. Control Optim. 52(2), 1010–1033 (2014)

Casas, E., Tröltzsch, F.: Second order optimality conditions for weak and strong local solutions of parabolic optimal control problems. Vietnam J. Math. 44(1), 181–202 (2016)

Casas, E., Vexler, B., Zuazua, E.: Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5(3), 377–399 (2015)

Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic pde. Syst. Control Lett. 62, 311–318 (2013)

Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17, 243–266 (2011). doi: 10.1051/cocv/2010003

Clason, C., Kunisch, K.: A measure space approach to optimal source placement. Comput. Optim. Appl. 53(1), 155–171 (2012)

Dunn, J.C.: On second order sufficient optimality conditions for structured nonlinear programs in infinite-dimensional function spaces. In: Fiacco, A. (ed.) Mathematical Programming with Data Perturbations, pp. 83–107. Marcel Dekker, New York (1998)

Edwards, R.E.: Functional analysis. Holt, Rinehart and Winston, New York (1965)

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin (1977)

Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012)

Kunisch, K., Pieper, K., Vexler, B.: Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52(5), 3078–3108 (2014)

Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence (1988)

Lang, S.: Real analysis, 2nd edn. Addison Wesley, Redison (1983)

Pieper, K., Vexler, B.: A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51(4), 2788–2808 (2013)

Stadler, G.: Elliptic optimal control problems with $${L}^1$$ L 1 -control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

Wachsmuth, D., Wachsmuth, G.: Convergence and regularisation results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011)

Wachsmuth, D., Wachsmuth, G.: Regularization error estimates and discrepancy principle for optimal control problems with inequality constraints. Control Cybern. 40(4), 1125–1158 (2011)