A review on one dimensional perovskite nanocrystals for piezoelectric applications
Tài liệu tham khảo
Cross, 2004, Lead-free at last, Nature, 432, 24, 10.1038/nature03142
Saito, 2004, Lead-free piezoceramics, Nature, 432, 84, 10.1038/nature03028
Li, 2013, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715
Wang, 2014, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics, J Am Chem Soc, 136, 2905, 10.1021/ja500076h
Shrout, 2007, Lead-free piezoelectric ceramics: alternatives for PZT?, J Electroceram, 19, 113, 10.1007/s10832-007-9047-0
Rørvik, 2011, One-dimensional nanostructures of ferroelectric perovskites, Adv Mater, 23, 4007, 10.1002/adma.201004676
Wang, 2007, Direct-current nanogenerator driven by ultrasonic waves, Science, 316, 102, 10.1126/science.1139366
Wang, 2007, Piezoelectric nanostructures: from growth phenomena to electric nanogenerators, MRS Bull, 32, 109, 10.1557/mrs2007.42
Qin, 2008, Microfibre-nanowire hybrid structure for energy scavenging, Nature, 451, 809, 10.1038/nature06601
Zhou, 2008, Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires, Nano Lett, 8, 2725, 10.1021/nl8010484
Wu, 2013, Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting, J Mater Chem A, 1, 7332, 10.1039/c3ta10792b
Yi, 2009, Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning, J Sol-Gel Sci Technol, 53, 480, 10.1007/s10971-009-2110-3
McCann, 2006, Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment, Chem Phys Lett, 424, 162, 10.1016/j.cplett.2006.04.082
Ávila, 2013, Dielectric behavior of Epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning, ACS Appl Mat Interfaces, 5, 505, 10.1021/am302646z
Hossain, 2009, The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning, Mater Lett, 63, 789, 10.1016/j.matlet.2009.01.005
Yoon, 1998, Molten salt synthesis of lead-based relaxors, J Mater Sci, 33, 2977, 10.1023/A:1004310931643
Afanasiev, 2006, Molten salt syntheses of alkali metal titanates, J Mater Sci, 41, 1187, 10.1007/s10853-005-3656-2
Zhan, 2010, Large-scale synthesis of single-crystalline KNb3O8 nanobelts via a simple molten salt method, Ceram Int, 36, 679, 10.1016/j.ceramint.2009.11.007
Peng, 2014, The fabrication and pyroelectric properties of single crystalline PZT nanorod synthesized by hydrothermal reaction, J Mater Sci Mater Electron, 25, 1627, 10.1007/s10854-014-1775-8
Zhou, 2013, Hydrothermal growth of highly textured BaTiO3 films composed of nanowires, Nanotechnology, 24, 10.1088/0957-4484/24/9/095602
Xu, 2012, Synthesis of homogeneous (Na1−xKx)NbO3 nanorods using hydrothermal and post-heat treatment processes, Chem Eng J, 211, 16, 10.1016/j.cej.2012.09.052
Wang, 2009, Hydrothermal synthesis and characterization of KNbO3 nanorods, CrystEngComm, 11, 1958, 10.1039/b907561p
Li, 2015, Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems, J Materiomics, 1, 3, 10.1016/j.jmat.2015.03.001
Liu, 2012, Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy, Phys Rev Lett, 108, 078103, 10.1103/PhysRevLett.108.078103
Park, 2004, Synthesis and characterization of multiferroic BiFeO3 nanotubes, Chem Commun, 2708, 10.1039/b409988e
Wang, 2003, The grain size effect on dielectric properties of BaTiO3 based ceramics, Mater Sci Eng B, 99, 199, 10.1016/S0921-5107(02)00520-2
Wang, 2006, Phase transition and high dielectric constant of bulk dense nanograin barium titanate ceramics, Appl Phys Lett, 89, 162902, 10.1063/1.2363930
Li, 2014, Significant increase of Curie temperature in nano-scale BaTiO3, Appl Phys Lett, 105, 182901, 10.1063/1.4901169
Li, 2014, Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique, Ceram Int, 40, 73, 10.1016/j.ceramint.2013.05.105
Koka, 2014, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ Sci, 7, 288, 10.1039/C3EE42540A
Koka, 2014, Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications, Nanotechnology, 25, 10.1088/0957-4484/25/37/375603
Tang, 2013, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors, Adv Energy Mater, 3, 451, 10.1002/aenm.201200808
Joshi, 2005, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small, 1, 1172, 10.1002/smll.200500055
Wang, 2013, Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv Funct Mater, 23, 4079, 10.1002/adfm.201203754
Cheng, 2014, Structure and composition characterization of lead-free (K, Na)NbO3 piezoelectric nanorods synthesized by the molten-salt reaction, J Mater Chem C, 2, 1519, 10.1039/C3TC32148G
Cheng, 2014, Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals, J Mater Chem C, 2, 9091, 10.1039/C4TC01745E
Yao, 2013, Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics, J Appl Phys, 113, 174105, 10.1063/1.4803711
Cheng, 2013, Synthesis of highly piezoelectric lead-free (K,Na)NbO3 one-dimensional perovskite nanostructures, Chem Commun, 49, 4003, 10.1039/c3cc41371c
Zhou, 2012, Orthorhombic to tetragonal phase transition due to stress release in (Li,Ta)-doped(K,Na)NbO3 lead-free piezoceramics, J Eur Ceram Soc, 32, 267, 10.1016/j.jeurceramsoc.2011.09.001
Xu, 2012, A facile method to fabricate vertically aligned (K,Na)NbO3 lead-free piezoelectric nanorods, J Mater Chem, 22, 23221, 10.1039/c2jm35090d
Wang, 2010, Low-Temperature sintering of Li-modified (K, Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical Properties, J Am Ceram Soc, 93, 1101, 10.1111/j.1551-2916.2009.03532.x
Zhang, 2004, Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays, Appl Phys Lett, 85, 4190, 10.1063/1.1814427
Cho, 2001, Hydrothermal synthesis of acicular lead zirconate titanate (PZT), J Cryst Growth, 226, 313, 10.1016/S0022-0248(01)00857-0
Deng, 2005, Synthesis and characterization of single-crystal PbTiO3 nanorods, Mater Lett, 59, 3272, 10.1016/j.matlet.2005.05.056
Rørvik, 2008, PbTiO3 nanorod arrays grown by self-assembly of nanocrystals, Nanotechnology, 19, 10.1088/0957-4484/19/22/225605
Alkoy, 2009, Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite, J Am Ceram Soc, 92, 2566, 10.1111/j.1551-2916.2009.03261.x
Lin, 2009, Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays, Appl Phys Lett, 95, 122901, 10.1063/1.3237170
Bai, 2012, Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor, Nano Energy, 1, 789, 10.1016/j.nanoen.2012.09.001
Wu, 2012, Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices, Acs Nano, 6, 6231, 10.1021/nn3016585
Deng, 2009, General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips, J Mater Chem, 19, 976, 10.1039/b815698k
Xu, 2005, Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires, Adv Mater, 17, 907, 10.1002/adma.200400998
Hu, 2008, Controllable hydrothermal synthesis of KTa1−xNbxO3 nanostructures with various morphologies and their growth mechanisms, Cryst Growth Des, 8, 832, 10.1021/cg070230q
Rørvik, 2009, Hierarchical PbTiO3 nanostructures grown on SrTiO3 substrates, Cryst Growth Des, 9, 1979, 10.1021/cg8012969
Gong, 2005, In-plane aligned Pb(ZrxTi1−x)O3 microbelts fabricated by near migration and restricted growth, Adv Mater, 17, 1952, 10.1002/adma.200500340
Urban, 2003, Single-crystalline barium titanate nanowires, Adv Mater, 15, 423, 10.1002/adma.200390098
Wang, 2009, Hydrothermal synthesis of single-crystal BaTiO3 dendrites, Mater Lett, 63, 239, 10.1016/j.matlet.2008.09.050
Joshi, 2006, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation, J Phys Chem B, 110, 12249, 10.1021/jp0600110
Tang, 2014, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites, ACS Appl Mater Interfaces, 6, 5450, 10.1021/am405038r
Zhou, 2013, Vertically aligned arrays of BaTiO3 nanowires, ACS Appl Mater Interfaces, 5, 11894, 10.1021/am403587q
Mao, 2003, Large-scale synthesis of single-crystal line perovskite nanostructures, J Am Chem Soc, 125, 15718, 10.1021/ja038192w
Ke, 2008, Sodium niobate nanowire and its piezoelectricity, J Phys Chem C, 112, 8827, 10.1021/jp711598j
Magrez, 2006, Growth of single-crystalline KNbO3 nanostructures, J Phys Chem B, 110, 58, 10.1021/jp053800a
Liu, 2002, Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method, J Nanosci Nanotechnol, 2, 617, 10.1166/jnn.2002.152
Grange, 2009, Lithium niobate nanowires synthesis, optical properties, and manipulation, Appl Phys Lett, 95, 143105, 10.1063/1.3236777
Wang, 2010, Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures, CrystEngComm, 12, 3157, 10.1039/c000169d
Li, 2009, Wire structure and morphology transformation of niobium oxide and niobates by molten salt synthesis, Chem Mater, 21, 1207, 10.1021/cm802776g
Xu, 2007, Synthesis of single-crystalline niobate nanorods via ion-exchange based on molten-salt reaction, J Am Chem Soc, 129, 15444, 10.1021/ja077251t
Madaro, 2011, Synthesis of anisometric KNbO3 and K0.5Na0.5NbO3 single crystals by chemical conversion of non-perovskite templates, CrystEngComm, 13, 1350, 10.1039/C0CE00414F
Zhao, 2005, Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors, Sens Actuators B, 109, 86, 10.1016/j.snb.2005.03.093
Wood, 2008, Solution-phase synthesis of crystalline lithium niobate nanostructures, Adv Mater, 20, 4552, 10.1002/adma.200800333
Saito, 2010, Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties, Inorg Chem, 49, 2017, 10.1021/ic902107u
Lv, 2010, Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles, J Phys Chem C, 114, 6157, 10.1021/jp906550t
Pribošič, 2005, Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel, Chem Mater, 17, 2953, 10.1021/cm050079c
Arendt, 1973, Molten-salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals, J Solid State Chem, 8, 339, 10.1016/S0022-4596(73)80031-3
Arendt, 1979, Lead zirconate titanate ceramics from molten-salt slovent synthesized powders, Mater Res Bull, 14, 703, 10.1016/0025-5408(79)90055-2
Chiu, 1991, Molten-salt synthesis of a complex perovskite Pb(Fe0.5Nb0.5)O3, J Am Ceram Soc, 74, 38, 10.1111/j.1151-2916.1991.tb07293.x
Li, 2008, Topochemical synthesis of micron-platelet (Na0.5K0.5)NbO3 particles, Eur J Inorg Chem, 2186, 10.1002/ejic.200701263
Li, 2010, Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method, Inorg Chem, 49, 1397, 10.1021/ic902165r
Santulli, 2010, Synthesis of single-crystalline one-dimensional LiNbO3 nanowires, CrystEngComm, 12, 2675, 10.1039/c005318j
Xu, 2011, Synthesis and piezoelectricity of single-crystalline (K,Na)NbO3 nanobars, J Am Ceram Soc, 94, 3812, 10.1111/j.1551-2916.2011.04722.x
Huang, 2009, Morphology-controlled synthesis of barium titanate nanostructures, Inorg Chem, 48, 9180, 10.1021/ic900854x
Xu, 2005, Synthesis and characterization of single-crystalline alkali titanate nanowires, J Am Chem Soc, 127, 11584, 10.1021/ja0519841
Vasco, 2005, Growth kinetics of one-dimensional KNbO3 nanostructures by hydrothermal processing routes, J Phys Chem B, 109, 14331, 10.1021/jp051454r
Zhang, 2006, Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering, J Am Ceram Soc, 89, 1605, 10.1111/j.1551-2916.2006.00960.x
Joung, 2012, Structural variation of hydrothermally synthesized KNbO3 nanowires, J Appl Phys, 111, 114314, 10.1063/1.4729266
Sun, 2007, Hydrothermal synthesis of single crystalline (K,Na)NbO3 powders, Eur J Inorg Chem, 1884, 10.1002/ejic.200601131
Kalinin, 2005, Nanoelectromechanics of polarization switching in piezoresponse force microscopy, J Appl Phys, 97, 074305, 10.1063/1.1866483
Wang, 2007, Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires, Appl Phys Lett, 90, 133107, 10.1063/1.2716842
Xie, 2012, High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity, Nanoscale, 4, 408, 10.1039/C1NR11099C
Liu, 2013, Glucose suppresses biological ferroelectricity in aortic elastin, Phys Rev Lett, 110, 168101, 10.1103/PhysRevLett.110.168101
Wang, 2006, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire, Appl Phys Lett, 89, 263119, 10.1063/1.2425047
Chen, 2013, High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale, Nanoscale, 5, 5747, 10.1039/c3nr00770g
Yang, 2012, Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires, Adv Mater, 24, 5357, 10.1002/adma.201201414
Zhu, 2010, Flexible high-output nanogenerator based on lateral ZnO nanowire array, Nano Lett, 10, 3151, 10.1021/nl101973h
Mantini, 2009, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, Nano Res, 2, 624, 10.1007/s12274-009-9063-2
Chen, 2010, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett, 10, 2133, 10.1021/nl100812k
Jung, 2011, Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator, Acs Nano, 5, 10041, 10.1021/nn2039033
Wang, 2015, (K,Na)NbO3 nanofiber-based self-powered sensors for accurate detection of dynamic strain, ACS Appl Mater Interfaces, 7, 4921, 10.1021/am5090012
Park, 2013, Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes, Adv Energy Mater, 1539, 10.1002/aenm.201300458
Xu, 2013, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett, 13, 2393, 10.1021/nl400169t