A review on one dimensional perovskite nanocrystals for piezoelectric applications

Journal of Materiomics - Tập 2 - Trang 25-36 - 2016
Li-Qian Cheng1,2, Jing-Feng Li1
1State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
2Department of Materials Science and Engineering, China University of Mining & Technology, Beijing, 100083 Beijing, China

Tài liệu tham khảo

Cross, 2004, Lead-free at last, Nature, 432, 24, 10.1038/nature03142 Saito, 2004, Lead-free piezoceramics, Nature, 432, 84, 10.1038/nature03028 Li, 2013, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715 Wang, 2014, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics, J Am Chem Soc, 136, 2905, 10.1021/ja500076h Shrout, 2007, Lead-free piezoelectric ceramics: alternatives for PZT?, J Electroceram, 19, 113, 10.1007/s10832-007-9047-0 Rørvik, 2011, One-dimensional nanostructures of ferroelectric perovskites, Adv Mater, 23, 4007, 10.1002/adma.201004676 Wang, 2007, Direct-current nanogenerator driven by ultrasonic waves, Science, 316, 102, 10.1126/science.1139366 Wang, 2007, Piezoelectric nanostructures: from growth phenomena to electric nanogenerators, MRS Bull, 32, 109, 10.1557/mrs2007.42 Qin, 2008, Microfibre-nanowire hybrid structure for energy scavenging, Nature, 451, 809, 10.1038/nature06601 Zhou, 2008, Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires, Nano Lett, 8, 2725, 10.1021/nl8010484 Wu, 2013, Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting, J Mater Chem A, 1, 7332, 10.1039/c3ta10792b Yi, 2009, Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning, J Sol-Gel Sci Technol, 53, 480, 10.1007/s10971-009-2110-3 McCann, 2006, Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment, Chem Phys Lett, 424, 162, 10.1016/j.cplett.2006.04.082 Ávila, 2013, Dielectric behavior of Epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning, ACS Appl Mat Interfaces, 5, 505, 10.1021/am302646z Hossain, 2009, The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning, Mater Lett, 63, 789, 10.1016/j.matlet.2009.01.005 Yoon, 1998, Molten salt synthesis of lead-based relaxors, J Mater Sci, 33, 2977, 10.1023/A:1004310931643 Afanasiev, 2006, Molten salt syntheses of alkali metal titanates, J Mater Sci, 41, 1187, 10.1007/s10853-005-3656-2 Zhan, 2010, Large-scale synthesis of single-crystalline KNb3O8 nanobelts via a simple molten salt method, Ceram Int, 36, 679, 10.1016/j.ceramint.2009.11.007 Peng, 2014, The fabrication and pyroelectric properties of single crystalline PZT nanorod synthesized by hydrothermal reaction, J Mater Sci Mater Electron, 25, 1627, 10.1007/s10854-014-1775-8 Zhou, 2013, Hydrothermal growth of highly textured BaTiO3 films composed of nanowires, Nanotechnology, 24, 10.1088/0957-4484/24/9/095602 Xu, 2012, Synthesis of homogeneous (Na1−xKx)NbO3 nanorods using hydrothermal and post-heat treatment processes, Chem Eng J, 211, 16, 10.1016/j.cej.2012.09.052 Wang, 2009, Hydrothermal synthesis and characterization of KNbO3 nanorods, CrystEngComm, 11, 1958, 10.1039/b907561p Li, 2015, Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems, J Materiomics, 1, 3, 10.1016/j.jmat.2015.03.001 Liu, 2012, Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy, Phys Rev Lett, 108, 078103, 10.1103/PhysRevLett.108.078103 Park, 2004, Synthesis and characterization of multiferroic BiFeO3 nanotubes, Chem Commun, 2708, 10.1039/b409988e Wang, 2003, The grain size effect on dielectric properties of BaTiO3 based ceramics, Mater Sci Eng B, 99, 199, 10.1016/S0921-5107(02)00520-2 Wang, 2006, Phase transition and high dielectric constant of bulk dense nanograin barium titanate ceramics, Appl Phys Lett, 89, 162902, 10.1063/1.2363930 Li, 2014, Significant increase of Curie temperature in nano-scale BaTiO3, Appl Phys Lett, 105, 182901, 10.1063/1.4901169 Li, 2014, Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique, Ceram Int, 40, 73, 10.1016/j.ceramint.2013.05.105 Koka, 2014, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ Sci, 7, 288, 10.1039/C3EE42540A Koka, 2014, Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications, Nanotechnology, 25, 10.1088/0957-4484/25/37/375603 Tang, 2013, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors, Adv Energy Mater, 3, 451, 10.1002/aenm.201200808 Joshi, 2005, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small, 1, 1172, 10.1002/smll.200500055 Wang, 2013, Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv Funct Mater, 23, 4079, 10.1002/adfm.201203754 Cheng, 2014, Structure and composition characterization of lead-free (K, Na)NbO3 piezoelectric nanorods synthesized by the molten-salt reaction, J Mater Chem C, 2, 1519, 10.1039/C3TC32148G Cheng, 2014, Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals, J Mater Chem C, 2, 9091, 10.1039/C4TC01745E Yao, 2013, Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics, J Appl Phys, 113, 174105, 10.1063/1.4803711 Cheng, 2013, Synthesis of highly piezoelectric lead-free (K,Na)NbO3 one-dimensional perovskite nanostructures, Chem Commun, 49, 4003, 10.1039/c3cc41371c Zhou, 2012, Orthorhombic to tetragonal phase transition due to stress release in (Li,Ta)-doped(K,Na)NbO3 lead-free piezoceramics, J Eur Ceram Soc, 32, 267, 10.1016/j.jeurceramsoc.2011.09.001 Xu, 2012, A facile method to fabricate vertically aligned (K,Na)NbO3 lead-free piezoelectric nanorods, J Mater Chem, 22, 23221, 10.1039/c2jm35090d Wang, 2010, Low-Temperature sintering of Li-modified (K, Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical Properties, J Am Ceram Soc, 93, 1101, 10.1111/j.1551-2916.2009.03532.x Zhang, 2004, Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays, Appl Phys Lett, 85, 4190, 10.1063/1.1814427 Cho, 2001, Hydrothermal synthesis of acicular lead zirconate titanate (PZT), J Cryst Growth, 226, 313, 10.1016/S0022-0248(01)00857-0 Deng, 2005, Synthesis and characterization of single-crystal PbTiO3 nanorods, Mater Lett, 59, 3272, 10.1016/j.matlet.2005.05.056 Rørvik, 2008, PbTiO3 nanorod arrays grown by self-assembly of nanocrystals, Nanotechnology, 19, 10.1088/0957-4484/19/22/225605 Alkoy, 2009, Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite, J Am Ceram Soc, 92, 2566, 10.1111/j.1551-2916.2009.03261.x Lin, 2009, Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays, Appl Phys Lett, 95, 122901, 10.1063/1.3237170 Bai, 2012, Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor, Nano Energy, 1, 789, 10.1016/j.nanoen.2012.09.001 Wu, 2012, Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices, Acs Nano, 6, 6231, 10.1021/nn3016585 Deng, 2009, General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips, J Mater Chem, 19, 976, 10.1039/b815698k Xu, 2005, Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires, Adv Mater, 17, 907, 10.1002/adma.200400998 Hu, 2008, Controllable hydrothermal synthesis of KTa1−xNbxO3 nanostructures with various morphologies and their growth mechanisms, Cryst Growth Des, 8, 832, 10.1021/cg070230q Rørvik, 2009, Hierarchical PbTiO3 nanostructures grown on SrTiO3 substrates, Cryst Growth Des, 9, 1979, 10.1021/cg8012969 Gong, 2005, In-plane aligned Pb(ZrxTi1−x)O3 microbelts fabricated by near migration and restricted growth, Adv Mater, 17, 1952, 10.1002/adma.200500340 Urban, 2003, Single-crystalline barium titanate nanowires, Adv Mater, 15, 423, 10.1002/adma.200390098 Wang, 2009, Hydrothermal synthesis of single-crystal BaTiO3 dendrites, Mater Lett, 63, 239, 10.1016/j.matlet.2008.09.050 Joshi, 2006, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation, J Phys Chem B, 110, 12249, 10.1021/jp0600110 Tang, 2014, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites, ACS Appl Mater Interfaces, 6, 5450, 10.1021/am405038r Zhou, 2013, Vertically aligned arrays of BaTiO3 nanowires, ACS Appl Mater Interfaces, 5, 11894, 10.1021/am403587q Mao, 2003, Large-scale synthesis of single-crystal line perovskite nanostructures, J Am Chem Soc, 125, 15718, 10.1021/ja038192w Ke, 2008, Sodium niobate nanowire and its piezoelectricity, J Phys Chem C, 112, 8827, 10.1021/jp711598j Magrez, 2006, Growth of single-crystalline KNbO3 nanostructures, J Phys Chem B, 110, 58, 10.1021/jp053800a Liu, 2002, Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method, J Nanosci Nanotechnol, 2, 617, 10.1166/jnn.2002.152 Grange, 2009, Lithium niobate nanowires synthesis, optical properties, and manipulation, Appl Phys Lett, 95, 143105, 10.1063/1.3236777 Wang, 2010, Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures, CrystEngComm, 12, 3157, 10.1039/c000169d Li, 2009, Wire structure and morphology transformation of niobium oxide and niobates by molten salt synthesis, Chem Mater, 21, 1207, 10.1021/cm802776g Xu, 2007, Synthesis of single-crystalline niobate nanorods via ion-exchange based on molten-salt reaction, J Am Chem Soc, 129, 15444, 10.1021/ja077251t Madaro, 2011, Synthesis of anisometric KNbO3 and K0.5Na0.5NbO3 single crystals by chemical conversion of non-perovskite templates, CrystEngComm, 13, 1350, 10.1039/C0CE00414F Zhao, 2005, Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors, Sens Actuators B, 109, 86, 10.1016/j.snb.2005.03.093 Wood, 2008, Solution-phase synthesis of crystalline lithium niobate nanostructures, Adv Mater, 20, 4552, 10.1002/adma.200800333 Saito, 2010, Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties, Inorg Chem, 49, 2017, 10.1021/ic902107u Lv, 2010, Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles, J Phys Chem C, 114, 6157, 10.1021/jp906550t Pribošič, 2005, Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel, Chem Mater, 17, 2953, 10.1021/cm050079c Arendt, 1973, Molten-salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals, J Solid State Chem, 8, 339, 10.1016/S0022-4596(73)80031-3 Arendt, 1979, Lead zirconate titanate ceramics from molten-salt slovent synthesized powders, Mater Res Bull, 14, 703, 10.1016/0025-5408(79)90055-2 Chiu, 1991, Molten-salt synthesis of a complex perovskite Pb(Fe0.5Nb0.5)O3, J Am Ceram Soc, 74, 38, 10.1111/j.1151-2916.1991.tb07293.x Li, 2008, Topochemical synthesis of micron-platelet (Na0.5K0.5)NbO3 particles, Eur J Inorg Chem, 2186, 10.1002/ejic.200701263 Li, 2010, Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method, Inorg Chem, 49, 1397, 10.1021/ic902165r Santulli, 2010, Synthesis of single-crystalline one-dimensional LiNbO3 nanowires, CrystEngComm, 12, 2675, 10.1039/c005318j Xu, 2011, Synthesis and piezoelectricity of single-crystalline (K,Na)NbO3 nanobars, J Am Ceram Soc, 94, 3812, 10.1111/j.1551-2916.2011.04722.x Huang, 2009, Morphology-controlled synthesis of barium titanate nanostructures, Inorg Chem, 48, 9180, 10.1021/ic900854x Xu, 2005, Synthesis and characterization of single-crystalline alkali titanate nanowires, J Am Chem Soc, 127, 11584, 10.1021/ja0519841 Vasco, 2005, Growth kinetics of one-dimensional KNbO3 nanostructures by hydrothermal processing routes, J Phys Chem B, 109, 14331, 10.1021/jp051454r Zhang, 2006, Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering, J Am Ceram Soc, 89, 1605, 10.1111/j.1551-2916.2006.00960.x Joung, 2012, Structural variation of hydrothermally synthesized KNbO3 nanowires, J Appl Phys, 111, 114314, 10.1063/1.4729266 Sun, 2007, Hydrothermal synthesis of single crystalline (K,Na)NbO3 powders, Eur J Inorg Chem, 1884, 10.1002/ejic.200601131 Kalinin, 2005, Nanoelectromechanics of polarization switching in piezoresponse force microscopy, J Appl Phys, 97, 074305, 10.1063/1.1866483 Wang, 2007, Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires, Appl Phys Lett, 90, 133107, 10.1063/1.2716842 Xie, 2012, High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity, Nanoscale, 4, 408, 10.1039/C1NR11099C Liu, 2013, Glucose suppresses biological ferroelectricity in aortic elastin, Phys Rev Lett, 110, 168101, 10.1103/PhysRevLett.110.168101 Wang, 2006, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire, Appl Phys Lett, 89, 263119, 10.1063/1.2425047 Chen, 2013, High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale, Nanoscale, 5, 5747, 10.1039/c3nr00770g Yang, 2012, Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires, Adv Mater, 24, 5357, 10.1002/adma.201201414 Zhu, 2010, Flexible high-output nanogenerator based on lateral ZnO nanowire array, Nano Lett, 10, 3151, 10.1021/nl101973h Mantini, 2009, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, Nano Res, 2, 624, 10.1007/s12274-009-9063-2 Chen, 2010, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett, 10, 2133, 10.1021/nl100812k Jung, 2011, Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator, Acs Nano, 5, 10041, 10.1021/nn2039033 Wang, 2015, (K,Na)NbO3 nanofiber-based self-powered sensors for accurate detection of dynamic strain, ACS Appl Mater Interfaces, 7, 4921, 10.1021/am5090012 Park, 2013, Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes, Adv Energy Mater, 1539, 10.1002/aenm.201300458 Xu, 2013, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett, 13, 2393, 10.1021/nl400169t