A review on microelectrode array fabrication techniques and their applications

Materials Today Chemistry - Tập 26 - Trang 101153 - 2022
A. Tanwar1, H.A. Gandhi1, D. Kushwaha1, J. Bhattacharya1
1Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India

Tài liệu tham khảo

Voldman, 1999, Microfabrication in biology and medicine, Annu. Rev. Biomed. Eng. 01(1), 401, 10.1146/annurev.bioeng.1.1.401 Jingyu, 2021, Implanted microelectrode arrays for evaluating inhibited seizure modulated by light-responsive hydrogel, J. Micromech. Microeng., 31, 105005, 10.1088/1361-6439/ac2127 Ahmadvand, 2020, Novel low-cost method for fabrication of 2D multi-electrode array (MEA) to evaluate functionality of neuronal cells, Proceedings, 60, 51 Zaouk, 2006, Introduction to microfabrication techniques, Methods Mol. Biol., 321, 5 Bogaerts, 2002, Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography, IEEE J. Sel. Top. Quant. Electron., 8, 928, 10.1109/JSTQE.2002.800845 Kang, 2021, A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery, Microsystems & nanoengineering, 7, 66, 10.1038/s41378-021-00295-6 Br¨uggemann, 2011, Nanostructured gold microelectrodes for extracellular recording from electrogenic cells, Nanotechnology, 22, 265104, 10.1088/0957-4484/22/26/265104 Seo, 2022, Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals, Sci. Adv., 8, 10.1126/sciadv.abk2901 Wang, 2012, Microfabricated electrochemical cell-based biosensors for analysis of living cells, Biosensors, 2, 127, 10.3390/bios2020127 Duc, 2021, Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA), Lab Chip, 21, 4223, 10.1039/D1LC00497B Moriya, 2021, Modulation of dynamics in a pre-existing hippocampal network by neural stem cells on a microelectrode array, J. Neural. Eng., 18, 10.1088/1741-2552/ac1c88 Ji, 2021, Cardiac cell patterning on customized microelectrode arrays for electrophysiological recordings, Micromachines, 12, 1351, 10.3390/mi12111351 Obien, 2015, Revealing neuronal functions through microelectrode array recordings, Front. Neurosci., 8, 423, 10.3389/fnins.2014.00423 Bartsch, 2015, LTCC-based multi-electrode arrays for 3D in vitro cell cultures, J ceramic sci tech, 6, 315 Heuschkel, 2002, A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices, J. Neurosci. Methods, 114, 135, 10.1016/S0165-0270(01)00514-3 Gingerich, 2001, A 256-site 3D CMOS microelectrode array for multipoint stimulation and recording in the central nervous system Soscia, 2020, A flexible 3-dimensional microelectrode array for in vitro brain models, Lab Chip, 20, 865, 10.1039/C9LC01148J Motlagh, 2013, A review of microelectrode array technologies: design and implementation challenges, 2nd International conference on advances in biomedical engineering, 38 Kim, 2018, Recent progress on microelectrodes in neural interfaces, Materials, 11, 1, 10.3390/ma11101995 Hasan, 2018, Promising lithography techniques for next generation logic devices, Nanomanufacturing and metrology, 1, 67, 10.1007/s41871-018-0016-9 Temiz, 2012, A comparative study on fabrication techniques for on-chip microelectrodes, Lab Chip, 12, 4920, 10.1039/c2lc40582b Lu, 2022, Neuronal electrophysiological activities detection of defense behaviors using an implantable microelectrode array in the dorsal periaqueductal gray, Biosensors, 12, 193, 10.3390/bios12040193 Mandelli, 2021, Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C, Biomed. Microdevices, 23, 2, 10.1007/s10544-020-00542-z Hayden, 2010, Direct patterning of microelectrode arrays using femtosecond laser micromachining, Appl. Surf. Sci., 256, 3761, 10.1016/j.apsusc.2010.01.022 Dotan, 2020, Soft and flexible gold microelectrodes by supersonic cluster beam deposition and femtosecond laser processing, Microelectron. Eng., 237, 11478 Vėbraitė, 2021, Electrophysiological investigation of intact retina with soft printed organic neural interface, J. Neural. Eng., 18, 10.1088/1741-2552/ac36ab Liao, 2008, Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser, Appl. Surf. Sci., 254, 7018, 10.1016/j.apsusc.2008.05.122 Azim, 2019, Fabrication and Characterization of a 3D Printed, microelectrodes platform with functionalized electrospun nano-scaffolds and spin coated 3D insulation towards multi- functional biosystems, J. Microelectromech. Syst., 28, 606, 10.1109/JMEMS.2019.2913652 Fofonoff, 2004, Microelectrode array fabrication by electrical discharge machining and chemical etching, IEEE Trans. Biomed. Eng., 51, 890, 10.1109/TBME.2004.826679 Kundu, 2020, Development of a 3D printed, self-insulated, high-throughput 3D microelectrode array (HT-3DMEA), J. Microelectromech. Syst., 29, 1091, 10.1109/JMEMS.2020.3003644 Grob, 2021, Inkjet-printed and electroplated 3D electrodes for recording extracellular signals in cell culture, Sensors, 21, 3981, 10.3390/s21123981 Adly, 2018, Printed microelectrode arrays on soft materials: from PDMS to hydrogels, npj Flexible electronics, 2, 15, 10.1038/s41528-018-0027-z Cao, 2020, 3D-Printed carbon nanoelectrodes for in vivo neurotransmitter sensing, Nano Lett., 20, 6831, 10.1021/acs.nanolett.0c02844 Lin, 2021, Fabrication of soft tissue scaffold-mimicked microelectrode arrays using enzyme-mediated transfer printing, Micromachines, 12, 1057, 10.3390/mi12091057 Sharon, 2021, Ultrastructural analysis of neuroimplant-parenchyma interfaces uncover remarkable neuroregeneration along-with barriers that limit the implant electrophysiological functions, Front. Neurosci., 15, 764448, 10.3389/fnins.2021.764448 Koukharenko, 2005, A comparative study of different thick photoresists for MEMS applications, J. Mater. Sci. Mater. Electron., 16, 741, 10.1007/s10854-005-4977-2 Xu, 2017, Surface texturing and control of bacterial adhesion, 303 Anselme, 2010, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater., 6, 3824, 10.1016/j.actbio.2010.04.001 Khan, 2015, Technologies for printing sensors and electronics over large flexible substrates: a review, IEEE Sensor. J., 15, 3164, 10.1109/JSEN.2014.2375203 Dong, 2007, Screen-printed microfluidic device for electrochemical immunoassay, Lab Chip, 7, 1752, 10.1039/b712394a Kelly, 2007, Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex, J. Neurosci., 27, 261, 10.1523/JNEUROSCI.4906-06.2007 Thomas, 1972, A miniature microelectrode array to monitor the bioelectric activity of cultured cells, Exp. Cell Res., 74, 61, 10.1016/0014-4827(72)90481-8 Potter, 2001, Distributed processing in cultured neuronal networks, Prog. Brain Res., 130, 49, 10.1016/S0079-6123(01)30005-5 Spira, 2013, Multi-electrode array technologies for neuroscience and cardiology, Nat. Nanotechnol., 8, 83, 10.1038/nnano.2012.265 Cotterill, 2016, Characterization of early cortical neural network development in multiwell microelectrode array plates, J. Biomol. Screen, 21, 510, 10.1177/1087057116640520 Franke, 2012, High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity, Front. Neural Circ., 6, 105 Jeong, 2021, Fabrication of planar microelectrode array using laser-patterned ITO and SU-8, Micromachines, 12, 1347, 10.3390/mi12111347 Morin, 2005, Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives, J. Biosci. Bioeng., 100, 131, 10.1263/jbb.100.131 Koklu, 2019, Gold nanostructure microelectrode arrays for in vitro recording and stimulation from neuronal networks, Nanotechnology, 30, 235501, 10.1088/1361-6528/ab07cd Charkhkar, 2016, Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB, Acta Biomater., 32, 57, 10.1016/j.actbio.2015.12.022 Zlochiver, 2019, Human iPSC-derived cardiomyocyte networks on multiwell micro-electrode arrays for recurrent action potential recordings, JoVE : JoVE, 149 Wells, 2019, Cardiomyocyte functional screening: interrogating comparative electrophysiology of high-throughput model cell systems, Am. J. Physiol. Cell Physiol., 317, C1256, 10.1152/ajpcell.00306.2019 Sala, 2017, Electrophysiological analysis of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs), JoVE, 55587 Langhammer, 2011, Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials, Biotechnol. Prog., 27, 891, 10.1002/btpr.609 Ma, 2020, Microelectrode array analysis of mouse uterine smooth muscle electrical activity, Biol. Reprod., 102, 935, 10.1093/biolre/ioz214 Lewandowska, 2018, Long-Term high-density extracellular recordings enable studies of muscle cell physiology, Front. Physiol., 9, 10.3389/fphys.2018.01424 Carriere, 2021, In vitro electrochemical detection of hydrogen peroxide in activated macrophages via a platinum microelectrode array, Sensors, 21, 5607, 10.3390/s21165607 Wang, 2022, PtNPs/short MWCNT-PEDOT: PSS-modified microelectrode array to detect neuronal firing patterns in the dorsal raphe nucleus and Hippocampus of insomnia rats, Micromachines, 13, 488, 10.3390/mi13030488 Kim, 2021, Patterned sandwich-type silver nanowire-based flexible electrode by photolithography, ACS Appl. Mater. Interfaces, 13, 61463, 10.1021/acsami.1c19164 Didier, 2022, Compact micro-stereolithographic (μSLA) printed, 3D microelectrode arrays (3D MEAS) with monolithically defined positive and negative relief features for in vitro cardiac beat sensing, 325 Desai, 2010, Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black, Front. Neuroeng., 3, 5 Hu, 2017, Tip-based nanofabrication for scalable manufacturing, Micromachines, 8, 90, 10.3390/mi8030090 Seo, 2019, A 3D flexible microelectrode array for subretinal stimulation, J. Neural. Eng., 16, 56016, 10.1088/1741-2552/ab36ab Wei, 2022, Distributed implantation of a flexible microelectrode array for neural recording, Microsystems & nanoengineering, 8, 50, 10.1038/s41378-022-00366-2 Rodrigues, 2019, Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording, J. Neural. Eng., 17, 10.1088/1741-2552/ab4dbb Rakwal, 2009, Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining, Microsyst. Technol., 15, 789, 10.1007/s00542-009-0792-7 Lee, 2006, The measurement of compound neural action potential in sciatic nerve using microelectrode array. Conference proceedings : annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6743 Jahnke, 2019, Electrochemical live monitoring of tumor cell migration out of micro-tumors on an innovative multiwell high-dense microelectrode array, Sci. Rep., 9, 13875, 10.1038/s41598-019-50326-6 Nguyen, 2013, Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes, Anal. Chem., 85, 11068, 10.1021/ac402761s Eichler, 2015, A novel 96-well multielectrode array based impedimetric monitoring platform for comparative drug efficacy analysis on 2D and 3D brain tumor cultures, Biosens. Bioelectron., 67, 582, 10.1016/j.bios.2014.09.049 Clark, 1962, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29, 10.1111/j.1749-6632.1962.tb13623.x Desbiolles, 2019, Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays, Nano Lett., 19, 6173, 10.1021/acs.nanolett.9b02209 Wang, 2015, Effect of electrode shape on impedance of single HeLa cell: a comsol simulation, BioMed Res. Int., 871603 Shin, 2021, 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics, Nat. Commun., 12, 492, 10.1038/s41467-020-20763-3 Ulrich, 2005 Kim, 2017, Plateau-shaped flexible polymer microelectrode array for neural recording, Polymers, 9, 690, 10.3390/polym9120690 Qi, 2015, Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings, JoVE, 52358 Kamyshny, 2019, Conductive nanomaterials for 2D and 3D printed flexible electronics, Chem. Soc. Rev., 48, 1712, 10.1039/C8CS00738A Khraiche, 2020, Advances in three-dimensional nanostructures for intracellular recordings from electrogenic cells, J. Sci.: Advance Materials and Devices, 5, 279 Shokoohimehr, 2022, High-Aspect-Ratio nanoelectrodes enable long-term recordings of neuronal signals with subthreshold resolution, Small, 18, e2200053, 10.1002/smll.202200053 Kundu, 2020, Fabrication and characterization of 3D printed, 3D microelectrode arrays for interfacing with a peripheral nerve-on-a-chip, ACS Biomater. Sci. Eng., 7, 3018, 10.1021/acsbiomaterials.0c01184 Kim, 2022, An inkjet printed flexible electrocorticography (ECoG) microelectrode array on a thin parylene-C film, Sensors, 22, 1277, 10.3390/s22031277 Podešva, 2018, Nanostructured gold microelectrode array for ultrasensitive detection of heavy metal contamination, Anal. Chem., 90, 1161, 10.1021/acs.analchem.7b03725 Fendyur, 2012, Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes, Front. Neuroeng., 5, 21, 10.3389/fneng.2012.00021 Ryynänen, 2019, Microelectrode array with transparent ALD TiN electrodes, Front. Neurosci., 13, 226, 10.3389/fnins.2019.00226 Wu, 2021, Fluorescent labeling to investigate nanopatterning processes in Extreme ultraviolet lithography, ACS Appl. Mater. Interfaces, 13, 51790, 10.1021/acsami.1c16257 Okamoto, 2021, Initiation and termination of reentry-like activity in rat cardiomyocytes cultured in a microelectrode array, Biochem. Biophys. Res. Commun., 576, 117, 10.1016/j.bbrc.2021.08.069 Zhang, 2020, Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip, Microsystems & nanoengineering, 6, 81, 10.1038/s41378-020-00196-0 Castagnola, 2021, 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution, Biosens. Bioelectron., 191, 113440, 10.1016/j.bios.2021.113440 Xiao, 2019, Microelectrode arrays modified with nanocomposites for monitoring dopamine and spike firings under deep brain stimulation in rat models of Parkinson's disease, ACS Sens., 4, 1992, 10.1021/acssensors.9b00182 Atmaramani, 2020, Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation, Acta Biomater., 101, 565, 10.1016/j.actbio.2019.10.040 Li, 2021, PDMS–Parylene hybrid, flexible micro-ECoG electrode array for spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions, ACS Appl. Bio Mater., 4, 8013, 10.1021/acsabm.1c00923 Yalcin, 2021, Long-term brain-on-chip: multielectrode array recordings in 3D neural cell cultures, J. Vac. Sci. Technol. B, 39, 64004, 10.1116/6.0001297 Yang, 2021, A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording, Lab Chip, 21, 1096, 10.1039/D0LC01123A Neto, 2021, Transparent and flexible electrocorticography electrode arrays based on silver nanowire networks for neural recordings, ACS Appl. Nano Mater., 4, 5737, 10.1021/acsanm.1c00533 Eickenscheidt, 2022, An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures, Biosens. Bioelectron., 205, 114090, 10.1016/j.bios.2022.114090 Alahi, 2021, Slippery coated Implantable flexible microelectrode array (fMEA) for High-Performance Neural Interface, 980 Huang, 2021, In-situ growth of platinum nanowires on polydopamine for enhancing mechanical and electrochemical properties of flexible microelectrode arrays, IEEE Sensor. J., 21, 22868, 10.1109/JSEN.2021.3109451 Lam, 2021, Probing function in 3D neuronal cultures: a survey of 3D multielectrode array advances, Curr. Opin. Pharmacol., 60, 255, 10.1016/j.coph.2021.08.003 Vernekar, 2020, 3-D multi-electrode arrays detect early spontaneous electrophysiological activity in 3-D neuronal-astrocytic co-cultures, Biomedical engineering letters, 10, 579, 10.1007/s13534-020-00166-5 Fernández, 2021, Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex, J. Clin. Invest., 131, e151331, 10.1172/JCI151331 Jang, 2021, Long-term in-vivo recording performance of flexible penetrating microelectrode arrays, J. Neural. Eng., 18, 10.1088/1741-2552/ac3656 Ha, 2020, Hemispherical microelectrode array for ex vivo retinal neural recording, Micromachines, 11, 538, 10.3390/mi11050538 Niaraki, 2022, Graphene microelectrodes for real-time impedance spectroscopy of neural cells, ACS Appl. Bio Mater., 5, 113, 10.1021/acsabm.1c00913 Lu, 2021, PtNPt/MWCNT-PEDOT:PSS-Modified microelectrode arrays for the synchronous dopamine and neural spike detection in rat models of sleep deprivation, ACS Appl. Bio Mater., 4, 4872, 10.1021/acsabm.1c00172 Fan, 2022, PtNPs/PEDOT:PSS-Modified microelectrode arrays reveal electrophysiological activities of different neurons in medial amygdala of mice under innate fear, Front. Neurosci., 16, 868235, 10.3389/fnins.2022.868235 Gong, 2022, Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining, J. Manuf. Process., 79, 126, 10.1016/j.jmapro.2022.04.046 Abbott, 2022, Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array, Lab Chip, 22, 1286, 10.1039/D1LC00878A Yuan, 2021, Extracellular recording of entire neural networks using a dual-mode microelectrode array with 19584 electrodes and high SNR, IEEE J. Solid State Circ., 56, 2466, 10.1109/JSSC.2021.3066043 Tedjo, 2021, Real-time analysis of oxygen gradient in oocyte respiration using a high-density microelectrode array, Biosensors, 11, 256, 10.3390/bios11080256 Duru, 2022, Engineered biological neural networks on high density CMOS microelectrode arrays, Front. Neurosci., 16, 829884, 10.3389/fnins.2022.829884 Cha, 2022, A reconfigurable sub-array multiplexing microelectrode array system with 24,320 electrodes and 380 readout channels for investigating neural communication, 342 Guduru, 2021, Semi-transparent 3D microelectrodes buried in fused silica for photonics applications, Opt Express, 29, 27149, 10.1364/OE.433330