Đánh giá về các mảng cảm biến huỳnh quang và màu sắc hỗ trợ bởi machine learning cho việc xác định vi khuẩn

Microchimica Acta - Tập 190 - Trang 1-17 - 2023
Changmao Yang1, Houjin Zhang1
1Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, China

Tóm tắt

Cảm biến sinh học đã được sử dụng rộng rãi để xác định vi khuẩn với thành công lớn. Tuy nhiên, phương pháp "khóa và chìa khóa" mà cảm biến sinh học sử dụng để nhận diện vi khuẩn có một hạn chế quan trọng: nó chỉ có thể phát hiện một loài vi khuẩn. Trong những năm gần đây, các mảng cảm biến quang học (huỳnh quang và màu sắc) đang dần thu hút sự chú ý của các nhà nghiên cứu như một loại cảm biến sinh học mới. Chúng có thể thu thập nhiều đặc điểm của mục tiêu cùng một lúc, hình thành một mẫu đặc trưng và xác định loài vi khuẩn với sự hỗ trợ của các thuật toán nhận diện mẫu/học máy. Các đánh giá trước đây trong lĩnh vực này đã tập trung vào sự tương tác giữa mảng cảm biến và vi khuẩn hoặc các vật liệu được sử dụng để chế tạo các cảm biến. Đánh giá này, ngược lại, sẽ cung cấp cho các nhà nghiên cứu một hiểu biết tốt hơn về lĩnh vực bằng cách thảo luận về các mảng cảm biến huỳnh quang và màu sắc dựa trên cơ chế tạo ra tín hiệu quang học. Các mảng cảm biến này sẽ được so sánh dựa trên các loài được xác định. Cuối cùng, chúng tôi sẽ thảo luận về những hạn chế của các mảng cảm biến này và khám phá các giải pháp khả thi.

Từ khóa

#Cảm biến sinh học #huỳnh quang #màu sắc #học máy #nhận diện vi khuẩn.

Tài liệu tham khảo

GBD 2019 Antimicrobial Resistance Collaborators (2022) Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400(10369):2221–2248 Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399(10325):629–655 Petrucci S, Costa C, Broyles D, Kaur A, Dikici E, Daunert S, Deo SK (2022) Monitoring pathogenic viable E. coli O157:H7 in food matrices based on the detection of RNA using isothermal amplification and a paper-based platform. Analytical Chemistry 94(5):2485–2492 Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318 Saulnier D, De Decker S, Tourbiez D, Travers MA (2017) Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial cultures. J Microbiol Methods 140:67–69 Marx V (2016) Microbiology: the return of culture. Nat Methods 14(1):37–40 Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144(2):396–411 Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217 Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H (2018) Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 37(6):1021–1037 Wang P, Sun H, Yang W, Fang Y (2022) Optical methods for label-free detection of bacteria. Biosensors (Basel) 12(12):1171 Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522 Zhou J, Gui Y, Lv X, He J, Xie F, Li J, Cai J (2022) Nanomaterial-based fluorescent biosensor for food safety analysis. Biosensors (Basel) 12(12):1072 Xue J-W, Wang R, Yang J-Y, Wang L-X, Cao Y, Li H-D, Yang T, Wang J-H (2022) Sensitive plasmonic ELISA assay based on butyrylcholinesterase catalyzed hydrolysis for the detection of Staphylococcus aureus. Sensors Actuators B Chem 365:131948 Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8 Yu T, Xianyu Y (2021) Array-based biosensors for bacteria detection: from the perspective of recognition. Small 17(21):e2006230 Li Z, Suslick KS (2021) The Optoelectronic Nose. Acc Chem Res 54(4):950–960 Li Z, Askim JR, Suslick KS (2019) The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev 119(1):231–292 Miranda OR, You C-C, Phillips R, Kim I-B, Ghosh PS, Bunz UHF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129(32):9856–9857 Miranda OR, Creran B, Rotello VM (2010) Array-based sensing with nanoparticles: ‘chemical noses’ for sensing biomolecules and cell surfaces. Curr Opin Chem Biol 14(6):728–736 Schackart KE 3rd, Yoon JY (2021) Machine learning enhances the performance of bioreceptor-free biosensors. Sensors (Basel) 21(16):5519 Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS (2009) An optoelectronic nose for the detection of toxic gases. Nat Chem 1(7):562–567 Feng L, Musto CJ, Kemling JW, Lim SH, Suslick KS (2010) A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chem Commun (Camb) 46(12):2037–2039 Zhang H, Wei X, Chan-Park MB, Wang M (2022) Colorimetric sensors based on multifunctional polymers for highly sensitive detection of food spoilage. ACS Food Sci Technol 2(4):703–711 Huang XW, Zou XB, Shi JY, Guo Y, Zhao JW, Zhang J, Hao L (2014) Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chem 145:549–554 Zaragozá P, Fuentes A, Ruiz-Rico M, Vivancos JL, Fernández-Segovia I, Ros-Lis JV, Barat JM, Martínez-Máñez R (2015) Development of a colorimetric sensor array for squid spoilage assessment. Food Chem 175:315–321 Sener G, Uzun L, Denizli A (2014) Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl Mater Interfaces 6(21):18395–18400 Tan L, Chen Z, Zhao Y, Wei X, Li Y, Zhang C, Wei X, Hu X (2016) Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. Biosens Bioelectron 85:414–421 Najafzadeh F, Ghasemi F, Hormozi-Nezhad MR (2018) Anti-aggregation of gold nanoparticles for metal ion discrimination: a promising strategy to design colorimetric sensor arrays. Sensors Actuators B Chem 270:545–551 Chen Z, Zhang Z, Qi J, You J, Ma J, Chen L (2023) Colorimetric detection of heavy metal ions with various chromogenic materials: strategies and applications. J Hazard Mater 441:129889 Yoo YJ, Ko JH, Kim W-G, Kim YJ, Kong D-J, Kim S, Oh J-W, Song YM (2020) Dual-mode colorimetric sensor based on ultrathin resonating facilitator capable of nanometer-thick virus detection for environment monitoring. ACS Appl Nano Mater 3(7):6636–6644 De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UH, Rotello VM (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461–465 Bordbar MM, Samadinia H, Sheini A, Aboonajmi J, Sharghi H, Hashemi P, Khoshsafar H, Ghanei M, Bagheri H (2022) A colorimetric electronic tongue for point-of-care detection of COVID-19 using salivary metabolites. Talanta 246:123537 Bordbar MM, Samadinia H, Sheini A, Aboonajmi J, Hashemi P, Khoshsafar H, Halabian R, Khanmohammadi A, Nobakht MGBF, Sharghi H, Ghanei M, Bagheri H (2022) Visual diagnosis of COVID-19 disease based on serum metabolites using a paper-based electronic tongue. Anal Chim Acta 1226:340286 Zhang Y, Askim JR, Zhong W, Orlean P, Suslick KS (2014) Identification of pathogenic fungi with an optoelectronic nose. Analyst 139(8):1922–1928 Manesse M, Phillips AF, LaFratta CN, Palacios MA, Hayman RB, Walt DR (2013) Dynamic microbead arrays for biosensing applications. Lab Chip 13(11):2153–2160 Duncan B, Le NDB, Alexander C, Gupta A, Yesilbag Tonga G, Yazdani M, Landis RF, Wang L-S, Yan B, Burmaoglu S, Li X, Rotello VM (2017) Sensing by smell: nanoparticle–enzyme sensors for rapid and sensitive detection of bacteria with olfactory output. ACS Nano 11(6):5339–5343 Greener JG, Kandathil SM, Moffat L, Jones DT (2022) A guide to machine learning for biologists. Nat Rev Mol Cell Biol 23(1):40–55 Deo RC (2015) Machine learning in medicine. Circulation 132(20):1920–1930 Goodswen SJ, Barratt JLN, Kennedy PJ, Kaufer A, Calarco L, Ellis JT (2021) Machine learning and applications in microbiology. FEMS Microbiol Rev 45(5):fuab015 Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H (2018) eDoctor: machine learning and the future of medicine. J Intern Med 284(6):603–619 Juwei L, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Netw 14(1):195–200 Xu L, Raitoharju J, Iosifidis A, Gabbouj M (2022) Saliency-based multilabel linear discriminant analysis. IEEE Trans Cybern 52(10):10200–10213 Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233 Jian Y, Zhang D, Frangi AF, Jing-yu Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137 Wanggou S, Feng C, Xie Y, Ye L, Wang F, Li X (2016) Sample level enrichment analysis of KEGG pathways identifies clinically relevant subtypes of glioblastoma. J Cancer 7(12):1701–1710 Zou Z, Hua K, Zhang X (2021) HGC: Fast hierarchical clustering for large-scale single-cell data. Bioinformatics 37(21):3964–3965 Xin Y (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589 Ning W, Lei S, Yang J, Cao Y, Jiang P, Yang Q, Zhang J, Wang X, Chen F, Geng Z, Xiong L, Zhou H, Guo Y, Zeng Y, Shi H, Wang L, Xue Y, Wang Z (2020) Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng 4(12):1197–1207 Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29(7):R231–r236 Yang J, Lu S, Chen B, Hu F, Li C, Guo C (2023) Machine learning-assisted optical nano-sensor arrays in microorganism analysis. TrAC Trends Anal Chem 159:116945 Klymchenko AS (2017) Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc Chem Res 50(2):366–375 Svechkarev D, Sadykov MR, Bayles KW, Mohs AM (2018) Ratiometric fluorescent sensor array as a versatile tool for bacterial pathogen identification and analysis. ACS Sens 3(3):700–708 Fan X, Xu W, Han J, Jiang X, Wink M, Wu G (2019) Antimicrobial peptide hybrid fluorescent protein based sensor array discriminate ten most frequent clinic isolates. Biochim Biophys Acta Gen Subj 1863(6):1158–1166 Laliwala A, Svechkarev D, Sadykov MR, Endres J, Bayles KW, Mohs AM (2022) Simpler procedure and improved performance for pathogenic bacteria analysis with a paper-based ratiometric fluorescent sensor array. Anal Chem 94(5):2615–2624 Fan Y, Liu S, Yi Y, Rong H, Zhang J (2021) Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano 15(2):2005–2037 Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042 Peng B, Zhao F, Ping J, Ying Y (2020) Recent advances in nanomaterial-enabled wearable sensors: material synthesis, sensor design, and personal health monitoring. Small 16(44):2002681 Cheng R, Xiang Y, Guo R, Li L, Zou G, Fu C, Hou H, Ji X (2021) Structure and interface modification of carbon dots for electrochemical energy application. Small 17(40):2102091 Qi P, Chen X, Sun Y, Zhang D (2018) Multivalent glycosylated Cu:CdS quantum dots as a platform for rapid bacterial discrimination and detection. Sensors Actuators B Chem 254:431–436 Zheng L, Qi P, Zhang D (2019) Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sensors Actuators B Chem 286:206–213 Wang S, Zhang Y, Zhuo P, Hu Q, Chen Z, Zhou L (2020) Identification of eight pathogenic microorganisms by single concentration-dependent multicolor carbon dots. J Mater Chem B 8(27):5877–5882 Ji H, Wu L, Pu F, Ren J, Qu X (2018) Point-of-care identification of bacteria using protein-encapsulated gold nanoclusters. Adv Healthc Mater 7(13):1701370 Wang J, Jiang Z, Wei Y, Wang W, Wang F, Yang Y, Song H, Yuan Q (2022) Multiplexed identification of bacterial biofilm infections based on machine-learning-aided lanthanide encoding. ACS Nano 16(2):3300–3310 Yin M, Jing C, Li H, Deng Q, Wang S (2020) Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J Nanobiotechnol 18(1):41 Yang J-Y, Jia X-D, Gao R-X, Chen M-L, Yang T, Wang J-H (2021) Discrimination of pathogenic bacteria with boronic acid modified protonated g-C3N4 nanosheets at various pHs. Sensors Actuators B Chem 340:129951 Fan X, Xu W, Gao W, Jiang X, Wu G (2020) A facile method to classify clinic isolates with a turn-off sensor array based on graphene oxide and antimicrobial peptides. Sensors Actuators B Chem 307:127607 Sun Z, Wu S, Peng Y, Wang M, Jalalah M, Al-Assiri MS, Harraz FA, Yang J, Li G (2021) Sensor array for rapid pathogens identification fabricated with peptide-conjugated 2D metal-organic framework nanosheets. Chem Eng J 405:126707 Long S, Miao L, Li R, Deng F, Qiao Q, Liu X, Yan A, Xu Z (2019) Rapid identification of bacteria by membrane-responsive aggregation of a pyrene derivative. ACS Sensors 4(2):281–285 Behera P, Kumar Singh K, Kumar Saini D, De M (2022) Rapid discrimination of bacterial drug resistivity by array-based cross-validation using 2D MoS(2). Chemistry 28(47):e202201386 Li Z, Jiang Y, Tang S, Zou H, Wang W, Qi G, Zhang H, Jin K, Wang Y, Chen H, Zhang L, Qu X (2022) 2D nanomaterial sensing array using machine learning for differential profiling of pathogenic microbial taxonomic identification. Mikrochim Acta 189(8):273 Yang H, Jie X, Wang L, Zhang Y, Wang M, Wei W (2018) An array consisting of glycosylated quantum dots conjugated to MoS2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchimica Acta 185(11):512 Wang H, Zhou L, Qin J, Chen J, Stewart C, Sun Y, Huang H, Xu L, Li L, Han J, Li F (2022) One-component multichannel sensor array for rapid identification of bacteria. Anal Chem 94(28):10291–10298 Liu Z, Zhu X, Lu Q, Liu M, Li H, Zhang Y, Liu Y, Yao S (2023) Recognition engineering-mediated multichannel sensor array for gut microbiota sensing. Anal Chem 95(14):5911–5919 Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF (2017) A polymer/peptide complex-based sensor array that discriminates bacteria in urine. Angew Chem Int Ed Engl 56(48):15246–15251 Wu Q, Li Y, Wang L, Wang D, Tang BZ (2022) Aggregation-induced emission: an emerging concept in brain science. Biomaterials 286:121581 Liu G-J, Tian S-N, Li C-Y, Xing G-W, Zhou L (2017) Aggregation-induced-emission materials with different electric charges as an artificial tongue: design, construction, and assembly with various pathogenic bacteria for effective bacterial imaging and discrimination. ACS Appl Mater Interfaces 9(34):28331–28338 Shen J, Hu R, Zhou T, Wang Z, Zhang Y, Li S, Gui C, Jiang M, Qin A, Tang BZ (2018) Fluorescent sensor array for highly efficient microbial lysate identification through competitive interactions. ACS Sensors 3(11):2218–2222 Zhou C, Xu W, Zhang P, Jiang M, Chen Y, Kwok RTK, Lee MMS, Shan G, Qi R, Zhou X, Lam JWY, Wang S, Tang BZ (2019) Engineering sensor arrays using aggregation-induced emission luminogens for pathogen identification. Adv Funct Mater 29(4):1805986 Tomita S, Kusada H, Kojima N, Ishihara S, Miyazaki K, Tamaki H, Kurita R (2022) Polymer-based chemical-nose systems for optical-pattern recognition of gut microbiota. Chem Sci 13(20):5830–5837 Carneiro M, Rodrigues LR, Moreira FTC, Sales MGF (2022) Colorimetric paper-based sensors against cancer biomarkers. Sensors (Basel) 22(9):3221 Choi Y, Hwang JH, Lee SY (2018) Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods 2(4):1700351 Celik C, Can Sezgin G, Kocabas UG, Gursoy S, Ildiz N, Tan W, Ocsoy I (2021) Novel anthocyanin-based colorimetric assay for the rapid, sensitive, and quantitative detection of Helicobacter pylori. Anal Chem 93(15):6246–6253 Celik C, Ildiz N, Sagiroglu P, Atalay MA, Yazici C, Ocsoy I (2020) Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta 219:121292 Celik C, Ildiz N, Kaya MZ, Kilic AB, Ocsoy I (2020) Preparation of natural indicator incorporated media and its logical use as a colorimetric biosensor for rapid and sensitive detection of methicillin-resistant Staphylococcus aureus. Analytica Chimica Acta 1128:80–89 Tang L, Li J (2017) Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sensors 2(7):857–875 Su H, Ma Q, Shang K, Liu T, Yin H, Ai S (2012) Gold nanoparticles as colorimetric sensor: a case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sensors Actuators B Chem 161(1):298–303 Verma MS, Wei S-C, Rogowski JL, Tsuji JM, Chen PZ, Lin C-W, Jones L, Gu FX (2016) Interactions between bacterial surface and nanoparticles govern the performance of “chemical nose” biosensors. Biosens Bioelectron 83:115–125 Li BY, Li XZ, Dong YH, Wang B, Li DY, Shi YM, Wu YY (2017) Colorimetric sensor array based on gold nanoparticles with diverse surface charges for microorganisms identification. Anal Chem 89(20):10639–10643 Lin X, Chen X (2019) Gold nanoparticles stabilized with four kinds of amino acid-derived carbon dots for colorimetric and visual discrimination of proteins and microorganisms. Mikrochim Acta 186(8):513 Yan P, Ding Z, Li XZ, Dong YH, Fu T, Wu YY (2019) Colorimetric sensor array based on Wulff-type boronate functionalized AgNPs at various pH for bacteria identification. Anal Chem 91(19):12134–12137 Gao X, Li M, Zhao M, Wang X, Wang S, Liu Y (2022) Metabolism-triggered colorimetric sensor array for fingerprinting and antibiotic susceptibility testing of bacteria. Anal Chem 94(19):6957–6966 Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583 Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412 Lu Z, Lu N, Xiao Y, Zhang Y, Tang Z, Zhang M (2022) Metal-nanoparticle-supported nanozyme-based colorimetric sensor array for precise identification of proteins and oral bacteria. ACS Appl Mater Interfaces 14(9):11156–11166 Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y (2022) Single probe-based chemical-tongue sensor array for multiple bacterial identification and photothermal sterilization in real time. ACS Appl Mater Interfaces 14(6):7706–7716 Wilson AD, Lester DG, Oberle CS (2004) Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes. Phytopathology® 94(5):419–431 Koo C-K, Wang S, Gaur RL, Samain F, Banaei N, Kool ET (2011) Fluorescent DNA chemosensors: identification of bacterial species by their volatile metabolites. Chem Commun 47(41):11435–11437 Chingin K, Liang J, Liu Y, Chen L, Wu X, Hu L, Ouyang Y (2016) Rapid detection of Mycobacterium tuberculosis cultures by direct ambient corona discharge ionization mass spectrometry of volatile metabolites. RSC Adv 6(64):59749–59752 Chen J, Tang J, Shi H, Tang C, Zhang R (2017) Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry. J Basic Microbiol 57(3):228–237 Dias T, Santos VS, Zorgani T, Ferreiro N, Rodrigues AI, Zaghdoudi K, Veloso ACA, Peres AM (2022) A lab-made E-nose-MOS device for assessing the bacterial growth in a solid culture medium. Biosensors (Basel) 13(1):19 Kuchmenko T, Menzhulina D, Shuba A (2022) Noninvasive detection of bacterial infection in children using piezoelectric E-nose. Sensors (Basel) 22(21):8496 Lim SH, Mix S, Anikst V, Budvytiene I, Eiden M, Churi Y, Queralto N, Berliner A, Martino RA, Rhodes PA, Banaei N (2016) Bacterial culture detection and identification in blood agar plates with an optoelectronic nose. Analyst 141(3):918–925 Bordbar MM, Tashkhourian J, Tavassoli A, Bahramali E, Hemmateenejad B (2020) Ultrafast detection of infectious bacteria using optoelectronic nose based on metallic nanoparticles. Sensors Actuators B Chem 319:128262 Yang MY, Liu XB, Luo YG, Pearlstein AJ, Wang SL, Dillow H, Reed K, Jia Z, Sharma A, Zhou B, Pearlstein D, Yu HY, Zhang BC (2021) Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food. Nature Food 2(2):110-+ Andal V, Buvaneswari G (2011) Preparation of Cu2O nano-colloid and its application as selective colorimetric sensor for Ag+ ion. Sensors Actuators B Chem 155(2):653–658 Han L, Shi J, Liu A (2017) Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sensors Actuators B Chem 252:919–926 Beiraghi A, Najibi-Gehraz SA (2017) Carbon dots-modified silver nanoparticles as a new colorimetric sensor for selective determination of cupric ions. Sens Actuators B 253:342–351 Zhang R, Liu L, Li W, Luo X, Wu F (2023) Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose. Colloids Surf. B. Biointerfaces 222:113125 Yang JY, Yang T, Wang XY, Wang YT, Liu MX, Chen ML, Yu YL, Wang JH (2019) A novel three-dimensional nanosensing array for the discrimination of sulfur-containing species and sulfur bacteria. Anal Chem 91(9):6012–6018 Yang J-Y, Jia X-D, Wang X-Y, Liu M-X, Chen M-L, Yang T, Wang J-H (2020) Discrimination of antibiotic-resistant Gram-negative bacteria with a novel 3D nano sensing array. Chem Commun 56(11):1717–1720 Wang Y, Li J, Liu H, Du X, Yang L, Zeng J (2023) Single-probe-based colorimetric and photothermal dual-mode identification of multiple bacteria. Anal Chem 95(5):3037–3044 Yu T, Fu Y, He J, Zhang J, Xianyu Y (2023) Identification of antibiotic resistance in ESKAPE pathogens through plasmonic nanosensors and machine learning. ACS Nano 17(5):4551–4563 Yu T, Su S, Hu J, Zhang J, Xianyu Y (2022) A new strategy for microbial taxonomic identification through micro-biosynthetic gold nanoparticles and machine learning. Adv Mater 34(11):e2109365