A review on lithium-ion power battery thermal management technologies and thermal safety
Tóm tắt
Từ khóa
Tài liệu tham khảo
Statistical review of world energy [EB/OL]. London: British Petroleum Company, 2016.
Birol F.. World energy outlook [EB/OL]. Paris: International Energy Agency, 2008.
Andersen P. H., Mathews J. A., Rask M.. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles [J]. Energy Policy, 2009, 37(7): 2481–2486.
Beijing environmental statement 2014 [EB/OL]. Beijing: Beijing Municipal Environmental Protection Bureau, 2015.
Pesaran AA.. Battery thermal management in EVs and HEVs: issues and solutions [C]. Advanced Automotive Battery Conference, Las Vegas, Nevada. 2001.
Rao Z., Wang S.. A review of power battery thermal energy management [J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554–4571.
Terada N., Yanagi T., Arai S., et al. Development of lithium batteries for energy storage and EV applications[J]. Journal of Power Sources, 2001, 100(1): 80–92.
Ritchie A., Howard W.. Recent developments and likely advances in lithium-ion batteries [J]. Journal of Power Sources, 2006, 162(2): 809–812.
Etacheri V., Marom R., Elazari R., et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 3243–3262.
Waldmann T., Wilka M., Kasper M., et al. Temperature dependent ageing mechanisms in Lithium-ion batteries-A Post-Mortem study [J]. Journal of Power Sources, 2014, 262: 129–135.
Doughty D., Roth E. P.. A general discussion of Li ion battery safety [J]. Electrochemical Society Interface, 2012, 21(2): 37–44.
Motloch C. G., Christophersen J. P., Belt J. R., et al. PNGV battery testing procedures and analytical methodologies for HEV’s [C]. Proc. SAE Future Car Congress. Arlington, USA, 2002.
Huo Y., Rao Z.. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method [J]. Energy Conversion and Management, 2017, 133: 204–215.
Goriparti S., Miele E., De Angelis F., et al. Review on recent progress of nanostructured anode materials for Li-ion batteries [J]. Journal of Power Sources, 2014, 257: 421–443.
Bernardi D., Pawlikowski E., Newman J.. A general energy balance for battery systems [J]. Journal of the Electrochemical Society, 1985, 132(1): 5–12.
Gu W B., Wang C Y.. Thermal-Electrochemical Modeling of Battery Systems [J]. Journal of the Electrochemical Society, 2000, 147(8): 2910–2922.
Doyle M., Fuller T. F., Newman J.. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell [J]. Journal of the Electrochemical Society, 1993, 140(6): 1526–1533.
Bandhauer T. M., Garimella S., Fuller T. F.. A critical review of thermal issues in lithium-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(3): R1–R25.
Bandhauer T. M., Garimella S., Fuller T. F.. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery [J]. Journal of Power Sources, 2014, 247: 618–628.
Smith K., Wang C. Y.. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of power sources, 2006, 160(1): 662–673.
Tong W., Somasundaram K., Birgersson E., et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack [J]. International Journal of Thermal Sciences, 2015, 94: 259–269.
Spotnitz R., Franklin J.. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources, 2003, 113(1): 81–100.
Ramadass P., Haran B., White R., et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance [J]. Journal of power sources, 2002, 112(2): 606–613.
Pesaran A A.. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377–382.
Vetter J., Novák P., Wagner M. R., et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of power sources, 2005, 147(1): 269–281.
Barré A., Deguilhem B., Grolleau S., et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J]. Journal of Power Sources, 2013, 241: 680–689.
Haran B., White R., Popov B. N.. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis [J]. J. Power Sources, 2002, 112: 614–620.
Kuper C., Hoh M., Houchin-Miller G., et al. Thermal management of hybrid vehicle battery systems[C]. 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition (EVS-24), Stavanger, Norway. 2009.
Abada S., Marlair G., Lecocq A., et al. Safety focused modeling of lithium-ion batteries: A review [J]. Journal of Power Sources, 2016, 306: 178–192.
Jaguemont J., Boulon L., Dubé Y., et al. Low temperature discharge cycle tests for a lithium ion cell[C]. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). Coimbra, Portugal, 2014.
Hande A.. Internal battery temperature estimation using series battery resistance measurements during cold temperatures [J]. Journal of power sources, 2006, 158(2): 1039–1046.
Stuart T. A., Hande A.. HEV battery heating using AC currents [J]. Journal of Power Sources, 2004, 129(2): 368–378.
Bugga R., Smart M., Whitacre J., et al. Lithium ion batteries for space applications [C]. 2007 IEEE Aerospace Conference. Big Sky, USA, 2007.
Zhang S. S., Xu K., Jow T. R.. The low temperature performance of Li-ion batteries [J]. Journal of Power Sources, 2003, 115(1): 137–140.
Zhu G., Wen K., Lv W., et al. Materials insights into low-temperature performances of lithium-ion batteries [J]. Journal of Power Sources, 2015, 300: 29–40.
Yang N., Zhang X., Shang B. B., et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination [J]. Journal of Power Sources, 2016, 306: 733–741.
Gogoana R., Pinson M. B., Bazant M. Z., et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life [J]. Journal of Power Sources, 2014, 252: 8–13.
Mohammadian S. K., He Y. L., Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes [J]. Journal of Power Sources, 2015, 293: 458–466.
Smith J., Hinterberger M., Hable P., et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules [J]. Journal of Power Sources, 2014, 267: 784–792.
Pesaran A. A., Burch S., Keyser M.. An approach for designing thermal management systems for electric and hybrid vehicle battery packs [C]. 4th Vehicle Thermal Management Systems Conference and Exhibition, London, UK. 1999.
Huang Q., Yan M., Jiang Z.. Thermal study on single electrodes in lithium-ion battery [J]. Journal of Power Sources, 2006, 156(2): 541–546.
Zhao R., Liu J., Gu J.. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery [J]. Applied Energy, 2015, 139: 220–229.
Hamankiewicz B., Michalska M., Krajewski M., et al. The effect of electrode thickness on electrochemical performance of LiMn2O4 cathode synthesized by modified sol-gel method [J]. Solid State Ionics, 2014, 262: 9–13.
Lu W., Jansen A., Dees D., et al. High-energy electrode investigation for plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2011, 196(3): 1537–1540.
Sakti A., Michalek J. J., Fuchs E. R. H., et al. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification [J]. Journal of Power Sources, 2015, 273: 966–980.
Zheng H., Li J., Song X., et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes [J]. Electrochimica Acta, 2012, 71: 258–265.
Zhao R., Gu J., Liu J.. An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations [J]. Journal of Power Sources, 2014, 266: 422–432.
Du W., Gupta A., Zhang X., et al. Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance [J]. International Journal of Heat and Mass Transfer, 2010, 53(17): 3552–3561.
Okubo M., Hosono E., Kim J., et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American chemical society, 2007, 129(23): 7444–7452.
Xiao L., Guo Y., Qu D., et al. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials [J]. Journal of Power Sources, 2013, 225: 286–292.
Xiang X., Li X., Li W.. Preparation and characterization of size-uniform Li [Li0.131 Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery [J]. Journal of Power Sources, 2013, 230: 89–95.
Jin Y. C., Lu M. I., Wang T. H., et al. Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery [J]. Journal of Power Sources, 2014, 262: 483–487.
Utsunomiya T., Hatozaki O., Yoshimoto N., et al. Influence of particle size on the self-discharge behavior of graphite electrodes in lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(20): 8675–8682.
Chen Y. H., Wang C. W., Zhang X., et al. Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J]. Journal of Power Sources, 2010, 195(9): 2851–2862.
Zheng H., Tan L., Liu G., et al. Calendering effects on the physical and electrochemical properties of Li[Ni1/3 Mn1/3Co1/3]O2 cathode [J]. Journal of Power Sources, 2012, 208: 52–57.
Zheng H., Liu G., Song X., et al. Cathode performance as a function of inactive material and void fractions[J]. Journal of the Electrochemical Society, 2010, 157(10): A1060–A1066.
Park M., Zhang X., Chung M., et al. A review of conduction phenomena in Li-ion batteries [J]. Journal of Power Sources, 2010, 195(24): 7904–7929.
Bazito F. F. C., Torresi R. M.. Cathodes for lithium ion batteries: the benefits of using nanostructured materials [J]. Journal of the Brazilian Chemical Society, 2006, 17(4): 627–642.
Marom R., Amalraj S. F., Leifer N., et al. A review of advanced and practical lithium battery materials [J]. Journal of Materials Chemistry, 2011, 21(27): 9938–9954.
Chikkannanavar S. B., Bernardi D. M., Liu L.. A review of blended cathode materials for use in Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 91–100.
Fan L., Khodadadi J. M., Pesaran A. A.. A parametric study on thermal management of an air-cooled lithium- ion battery module for plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2013, 238: 301–312.
Wang T., Tseng K. J., Zhao J., et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Applied Energy, 2014, 134: 229–238.
Tong W., Somasundaram K., Birgersson E., et al. Thermo- electrochemical model for forced convection air cooling of a lithium-ion battery module [J]. Applied Thermal Engineering, 2016, 99: 672–682.
Yang N., Zhang X., Li G., et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements [J]. Applied Thermal Engineering, 2015, 80: 55–65.
Reyes-Marambio J., Moser F., Gana F., et al. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements [J]. Journal of Power Sources, 2016, 306: 636–645.
Giuliano M. R., Prasad A. K., Advani S. G.. Experimental study of an air-cooled thermal management system for high capacity lithium–titanate batteries [J]. Journal of Power Sources, 2012, 216: 345–352.
Li X., He F., Ma L.. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation [J]. Journal of Power Sources, 2013, 238: 395–402.
Xun J., Liu R., Jiao K.. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs [J]. Journal of Power Sources, 2013, 233: 47–61.
Choi Y. S., Kang D. M.. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles [J]. Journal of Power Sources, 2014, 270: 273–280.
Wang T., Tseng K. J., Zhao J.. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model [J]. Applied Thermal Engineering, 2015, 90: 521–529.
Saw L. H., Ye Y., Tay A. A. O., et al. Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling [J]. Applied Energy, 2016, 177: 783–792.
Sun H., Dixon R.. Development of cooling strategy for an air cooled lithium-ion battery pack [J]. Journal of Power Sources, 2014, 272: 404–414.
Mohammadian S. K., Zhang Y.. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431–439.
Mahamud R., Park C.. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity [J]. Journal of Power Sources, 2011, 196(13): 5685–5696.
Yu K., Yang X., Cheng Y., et al. Thermal analysis and two-directional air flow thermal management for lithium- ion battery pack [J]. Journal of Power Sources, 2014, 270: 193–200.
Mohammadian S. K., Rassoulinejad-Mousavi S. M., Zhang Y.. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam [J]. Journal of Power Sources, 2015, 296: 305–313.
Nelson P., Dees D., Amine K., et al. Modeling thermal management of lithium-ion PNGV batteries [J]. Journal of Power Sources, 2002, 110(2): 349–356.
1 Chen S. C., Wan C. C., Wang Y. Y.. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111–124.
Al Hallaj S., Selman J. R.. A novel thermal management system for electric vehicle batteries using phase-change material [J]. Journal of the Electrochemical Society, 2000, 147(9): 3231–3236.
Al-Hallaj S., Selman J. R.. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. Journal of power sources, 2002, 110(2): 341–348.
Ling Z., Zhang Z., Shi G., et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules [J]. Renewable and Sustainable Energy Reviews, 2014, 31: 427–438.
Hémery C. V., Pra F., Robin J. F., et al. Experimental performances of a battery thermal management system using a phase change material [J]. Journal of Power Sources, 2014, 270: 349–358.
Javani N., Dincer I., Naterer G. F., et al. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles [J]. International Journal of Heat and Mass Transfer, 2014, 72: 690–703.
Duan X., Naterer G. F.. Heat transfer in phase change materials for thermal management of electric vehicle battery modules [J]. International Journal of Heat and Mass Transfer, 2010, 53(23): 5176–5182.
Ramandi M. Y., Dincer I., Naterer G. F.. Heat transfer and thermal management of electric vehicle batteries with phase change materials [J]. Heat and mass transfer, 2011, 47(7): 777–788.
Moraga N. O., Xamán J. P., Araya R. H.. Cooling Li-ion batteries of racing solar car by using multiple phase change materials [J]. Applied Thermal Engineering, 2016, 108: 1041–1054.
Khateeb S. A., Amiruddin S., Farid M., et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation [J]. Journal of Power Sources, 2005, 142(1): 345–353.
Wang Z., Zhang Z., Jia L., et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery [J]. Applied Thermal Engineering, 2015, 78: 428–436.
Zhu F., Zhang C., Gong X.. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite [J]. Applied Thermal Engineering, 2016, 109: 373–383.
Rao Z., Huo Y., Liu X., et al. Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J]. Journal of the Energy Institute, 2015, 88(3): 241–246.
Li W. Q., Qu Z. G., He Y. L., et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials [J]. Journal of Power Sources, 2014, 255: 9–15.
Qu Z. G., Li W. Q., Tao W. Q.. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904–3913.
Mills A., Al-Hallaj S.. Simulation of passive thermal management system for lithium-ion battery packs [J]. Journal of Power Sources, 2005, 141(2): 307–315.
Fathabadi H.. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles [J]. Energy, 2014, 70: 529–538.
Lin C., Xu S., Chang G., et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets [J]. Journal of Power Sources, 2015, 275: 742–749.
Jiang G., Huang J., Fu Y., et al. Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management [J]. Applied Thermal Engineering, 2016, 108: 1119–1125.
Greco A., Jiang X., Cao D.. An investigation of lithium- ion battery thermal management using paraffin/porous-graphite-matrix composite [J]. Journal of Power Sources, 2015, 278: 50–68.
Alrashdan A., Mayyas A. T., Al-Hallaj S.. Thermo- mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs [J]. Journal of Materials Processing Technology, 2010, 210(1): 174–179.
Greco A., Jiang X.. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite [J]. Journal of Power Sources, 2016, 315: 127–139.
Lv Y., Yang X., Li X., et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins [J]. Applied Energy, 2016, 178: 376–382.
Ling Z., Chen J., Fang X., et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system [J]. Applied Energy, 2014, 121: 104–113.
Goli. P, Legedza S., Dhar A., et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 37–43.
Shaikh S., Lafdi K.. C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics [J]. Carbon, 2010, 48(3): 813–824.
Babapoor A., Azizi M., Karimi G.. Thermal management of a Li-ion battery using carbon fiber-PCM composites [J]. Applied Thermal Engineering, 2015, 82: 281–290.
Jeong S. G., Chung O., Yu S., et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets [J]. Solar Energy Materials and Solar Cells, 2013, 117: 87–92.
Kizilel R., Lateef A., Sabbah R., et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2008, 183(1): 370–375.
Ling Z., Wang F., Fang X., et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling [J]. Applied Energy, 2015, 148: 403–409.
Rao Z., Wang Q., Huang C.. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system [J]. Applied Energy, 2016, 164: 659–669.
Gaugler R. S.. Heat transfer device: U.S. 2350348 [P]. 1942–12-21.
Park Y. J., Jun S., Kim S., et al. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft [J]. Journal of mechanical science and technology, 2010, 24(2): 609–618.
Wu M. S., Liu K. H., Wang Y. Y., et al. Heat dissipation design for lithium-ion batteries [J]. Journal of power sources, 2002, 109(1): 160–166.
Tran T. H., Harmand S., Sahut B.. Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery [J]. Journal of Power Sources, 2014, 265: 262–272.
Rao Z., Huo Y., Liu X.. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery [J]. Experimental Thermal and Fluid Science, 2014, 57: 20–26.
Rao Z., Wang S., Wu M., et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe [J]. Energy Conversion and Management, 2013, 65: 92–97.
Ye Y., Saw L. H., Shi Y., et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium- ion batteries during fast charging [J]. Applied Thermal Engineering, 2015, 86: 281–291.
Wang Q., Jiang B., Xue Q. F., et al. Experimental investigation on EV battery cooling and heating by heat pipes [J]. Applied Thermal Engineering, 2015, 88: 54–60.
Zhao J., Rao Z., Liu C., et al. Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering, 2016, 93: 90–100.
Tran T. H., Harmand S., Desmet B., et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery [J]. Applied Thermal Engineering, 2014, 63(2): 551–558.
Zhao R., Gu J., Liu J.. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries [J]. Journal of Power Sources, 2015, 273: 1089–1097.
Putra N., Ariantara B., Pamungkas R. A.. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application [J]. Applied Thermal Engineering, 2016, 99: 784–789.
Greco A., Cao D., Jiang X., et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J]. Journal of Power Sources, 2014, 257: 344–355.
Liu F., Lan F., Chen J.. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling [J]. Journal of Power Sources, 2016, 321: 57–70.
Chen D., Jiang J., Kim G. H., et al. Comparison of different cooling methods for lithium ion battery cells [J]. Applied Thermal Engineering, 2016, 94: 846–854.
Karimi G., Li X.. Thermal management of lithium-ion batteries for electric vehicles [J]. International Journal of Energy Research, 2013, 37(1): 13–24.
Hirano H., Tajima T., Hasegawa T., et al. Boiling Liquid Battery Cooling for Electric Vehicle[C]. 2014 IEEE Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE, Beijing, China, 2014: 1–4.
van Gils R. W., Danilov D., Notten P. H. L., et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion and Management, 2014, 79: 9–17.
Huo Y., Rao Z., Liu X., et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387–395.
Qian Z., Li Y., Rao Z.. Thermal performance of lithium- ion battery thermal management system by using mini-channel cooling [J]. Energy Conversion and Management, 2016, 126: 622–631.
Smith J., Hinterberger M., Schneider C., et al. Energy savings and increased electric vehicle range through improved battery thermal management [J]. Applied Thermal Engineering, 2016, 101: 647–656.
Giuliano M. R., Advani S. G., Prasad A. K.. Thermal analysis and management of lithium-titanate batteries[J]. Journal of Power Sources, 2011, 196(15): 6517–6524.
Panchal S., Dincer I., Agelin-Chaab M., et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204–212.
Panchal S., Dincer I., Agelin-Chaab M., et al. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190–199.
Panchal S., Dincer I., Agelin-Chaab M., et al. Experimental temperature distributions in a prismatic lithium- ion battery at varying conditions [J]. International Communications in Heat and Mass Transfer, 2016, 71: 35–43.
Nieto N., Díaz L., Gastelurrutia J., et al. Novel thermal management system design methodology for power lithium- ion battery [J]. Journal of Power Sources, 2014, 272: 291–302.
Jin L. W., Lee P. S., Kong X. X., et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786–1794.
Jarrett A., Kim I. Y.. Design optimization of electric vehicle battery cooling plates for thermal performance [J]. Journal of Power Sources, 2011, 196(23): 10359–10368.
Jarrett A., Kim I. Y.. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates [J]. Journal of Power Sources, 2014, 245: 644–655.
Yuan H., Wang L., Wang L.. Battery thermal management system with liquid cooling and heating in electric vehicles[ J]. Journal Automotive Safety and Energy, 2012, 3(4): 371–380.
Lan C., Xu J., Qiao Y., et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes [J]. Applied Thermal Engineering, 2016, 101: 284–292.
Zhao J., Rao Z., Li Y.. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery [J]. Energy Conversion and Management, 2015, 103: 157–165.
Basu S., Hariharan K. S., Kolake S. M., et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system [J]. Applied Energy, 2016, 181: 1–13.
Bandhauer T. M., Garimella S. Passive, internal thermal management system for batteries using microscale liquid–vapor phase change [J]. Applied Thermal Engineering, 2013, 61(2): 756–769.
Kritzer P., Harry D.. Improved Safety for Automotive Lithium Batteries: An Innovative Approach to include an Emergency Cooling Element [J]. Advances in Chemical Engineering and Science. 2014, 4: 197–207.
Krüger I. L., Limperich D., Schmitz G.. Energy Consumption Of Battery Cooling In Hybrid Electric Vehicles[C]. International Refrigeration and Air Conditioning Conference. West Lafayette, USA, 2012.
Spotnitz R., Franklin J.. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources, 2003, 113(1): 81–100.
Kim G. H., Pesaran A., Spotnitz R.. A three-dimensional thermal abuse model for lithium-ion cells [J]. Journal of Power Sources, 2007, 170(2): 476–489.
Spotnitz R. M., Weaver J., Yeduvaka G., et al. Simulation of abuse tolerance of lithium-ion battery packs [J]. Journal of power sources, 2007, 163(2): 1080–1086.
Pesaran A. A.. Energy Storage R&D: Thermal Management Studies and Modeling [C], DOE Hydrogen Program and Vehicle Technologies, Program Annual Merit Review and Peer Evaluation Meeting, Washington D.C, USA. 2009.
Smith K., Kim G. H., Darcy E., et al. Thermal/electrical modeling for abuse - tolerant design of lithium ion modules [J]. International Journal of Energy Research, 2010, 34(2): 204–215.
Feng Z. C., Zhang Y.. Thermal runaway due to symmetry breaking in parallel-connected battery cells [J]. International Journal of Energy Research, 2014, 38(6): 813–821.
Shack P., Iannello C., Rickman S., et al. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries, NASA Battery Workshop 2014, NASA Aerospace Battery Workshop, Huntsville, AL, United States, 18–20 Nov. 2014, available at http://ntrs.nasa.gov/search.jsp? R¼20150000860, accessed on 14.10.15.
Chen M., Sun Q., Li Y., et al. A thermal runaway simulation on a lithium titanate battery and the battery module [J]. Energies, 2015, 8(1): 490–500.
Jeevarajan J. A.. Hazards associated with high voltage high capacity lithium-ion batteries [J]. ECS Transactions, 2011, 33(22): 1–6.
Feng X., Sun J., Ouyang M., et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J]. Journal of Power Sources, 2015, 275: 261–273.
Lamb J., Orendorff C. J., Steele L. A. M., et al. Failure propagation in multi-cell lithium ion batteries [J]. Journal of Power Sources, 2015, 283: 517–523.
Wang Q., Ping P., Zhao X., et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210–224.
Mandal B. K., Padhi A. K., Shi Z., et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341–1345.
Kizilel R., Sabbah R., Selman J. R., et al. An alternative cooling system to enhance the safety of Li-ion battery packs [J]. Journal of Power Sources, 2009, 194(2): 1105–1112.
Coleman B., Ostanek J., Heinzel J.. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions [J]. Applied Energy, 2016, 180: 14–26.
Zhao R., Zhang S., Gu J., et al. An experimental study of lithium ion battery thermal management using flexible hydrogel films [J]. Journal of Power Sources, 2014, 255: 29–36.
Xu J., Lan C., Qiao Y., et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling [J]. Applied Thermal Engineering, 2017, 110: 883–890.
Bandhauer T. M., Farmer J. C.. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections: U.S. 201303 l2947Al [P]. 2013–11–28.
Berdichevsky E. M., Cole P. D., Hebert A. J., et al. Mitigation of propagation of thermal runaway in a multi-cell battery pack: U.S. 007433794B1[P]. 2008–10–7.