A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Niu, 2015, Nanosized microstructure of Al2O3-ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping, Scr. Mater., 95, 39, 10.1016/j.scriptamat.2014.09.026
Hu, 2018, Ultrasonic vibration-assisted laser engineered net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties, Ceram. Int., 44, 2752, 10.1016/j.ceramint.2017.11.013
Wang, 2003, Wear and corrosion resistance of laser clad Ni2Si/NiSi composite coatings, Surf. Coat. Technol., 168, 202, 10.1016/S0257-8972(03)00240-8
Hu, 2018, Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening, Compos. Part B: Eng., 133, 91, 10.1016/j.compositesb.2017.09.019
Man, 2006, In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding, Surf. Coat. Technol., 200, 4961, 10.1016/j.surfcoat.2005.05.017
Tucker, 1984, Laser-processed composite metal cladding for slurry erosion resistance, Thin Solid Films, 118, 73, 10.1016/0040-6090(84)90107-X
Nevelos, 2001, The influence of acetabular cup angle on the wear of “BIOLOX Forte” alumina ceramic bearing couples in a hip joint simulator, J. Mater. Sci.: Mater. Med., 12, 141
Höland, 2008, Ceramics as biomaterials for dental restoration, Expert Rev. Med. Devices, 5, 729, 10.1586/17434440.5.6.729
Miracle, 2005, Metal matrix composites–from science to technological significance, Compos. Sci. Technol., 65, 2526, 10.1016/j.compscitech.2005.05.027
A.D. Kurtz, J.R. Mallon Jr, T.A. Nunn, U.S. Patent No. 4,481,497, U.S. Patent and Trademark Office, Washington, DC, 1984.
Mandal, 2013, Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert, Int. J. Refract. Met. Hard Mater., 38, 40, 10.1016/j.ijrmhm.2012.12.007
He, 2008, Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses, J. Mater. Sci.: Mater. Med., 19, 2743
2012
Zeng, 2005, Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics, Int. J. Mach. Tools Manuf., 45, 1468, 10.1016/j.ijmachtools.2005.01.031
Rosso, 2006, Ceramic and metal matrix composites: routes and properties, J. Mater. Process. Technol., 175, 364, 10.1016/j.jmatprotec.2005.04.038
Zhang, 2003, Grinding induced damage in ceramics, J. Mater. Process. Technol., 132, 353, 10.1016/S0924-0136(02)00952-4
Bandyopadhyay, 1998, Piezoelectric ceramics and composites via rapid prototyping techniques, Rapid Prototyp. J., 4, 37, 10.1108/13552549810200285
A. Bandyopadhyay, R. Atisivan, G. Kuhn, S. Yeruva, Mechanical properties of interconnected phase alumina-Al composites, in: Proceedings of the Pro SFF, 2000, pp. 24–31.
Chartier, 2002, Stereolithography of structural complex ceramic parts, J. Mater. Sci., 37, 3141, 10.1023/A:1016102210277
Corcione, 2005, Silica moulds built by stereolithography, J. Mater. Sci., 40, 4899, 10.1007/s10853-005-3888-1
Corbel, 2011, Materials for stereolithography, 141
Ebert, 2009, Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res., 88, 673, 10.1177/0022034509339988
Waetjen, 2009, Slurry deposition by airbrush for selective laser sintering of ceramic components, J. Eur. Ceram. Soc., 29, 1, 10.1016/j.jeurceramsoc.2008.05.038
Scheithauer, 2014, Studies on thermoplastic 3D printing of steel-zirconia composites, J. Mater. Res., 29, 1931, 10.1557/jmr.2014.209
Klosterman, 1999, Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites, Rapid Prototyp. J., 5, 61, 10.1108/13552549910267362
Zhang, 2001, Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials, Mater. Sci. Eng.: A, 299, 218, 10.1016/S0921-5093(00)01377-0
Bertrand, 2007, Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci., 254, 989, 10.1016/j.apsusc.2007.08.085
Ghosh, 2011, Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process, Mater. Des., 32, 139, 10.1016/j.matdes.2010.06.020
Wilkes, 2013, Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting, Rapid Prototyp. J., 19, 51, 10.1108/13552541311292736
Attar, 2014, Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties, Acta Mater., 76, 13, 10.1016/j.actamat.2014.05.022
Balla, 2008, Processing of bulk alumina ceramics using laser engineered net shaping, Int. J. Appl. Ceram. Technol., 5, 234, 10.1111/j.1744-7402.2008.02202.x
Borkar, 2012, In situ nitridation of titanium-molybdenum alloys during laser deposition, J. Mater. Sci., 47, 7157, 10.1007/s10853-012-6656-z
ASTM, 2015
Huang, 2013, Additive manufacturing and its societal impact: a literature review, Int. J. Adv. Manuf. Technol., 67, 1191, 10.1007/s00170-012-4558-5
Ning, 2017, Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties, J. Compos. Mater., 51, 451, 10.1177/0021998316646169
Hu, 2018, Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: microstructure and wear performance, Opt. Laser Technol., 99, 174, 10.1016/j.optlastec.2017.08.032
Li, 2017, Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables, Ceram. Int., 43, 7768, 10.1016/j.ceramint.2017.03.085
Lee, 2017, Lasers in additive manufacturing: a review, Int. J. Precis. Eng. Manuf.-Green Technol., 4, 307, 10.1007/s40684-017-0037-7
Kruth, 2007, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann., 56, 730, 10.1016/j.cirp.2007.10.004
Hu, 2017, Selective laser alloying of elemental titanium and boron powder: thermal models and experiment verification, J. Mater. Process. Technol., 249, 426, 10.1016/j.jmatprotec.2017.06.029
Gu, 2012, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev., 57, 133, 10.1179/1743280411Y.0000000014
Balla, 2007, Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENS™), Scr. Mater., 57, 861, 10.1016/j.scriptamat.2007.06.055
Y.B. Hu, H. Wang, F.D. Ning, W.L. Cong, Laser engineered net shaping of commercially pure titanium: effects of fabricating variables, in: Proceedings of the ASME 2016 International Manufacturing Science and Engineering Conference (MSEC2016-8812), Blacksburg, Virginia, USA, 2016. 〈http://dx.doi.org/10.1115/MSEC2016-8812〉.
Optomec, LENS® for 3D printed metals, 2018. Retrieved from 〈https://www.optomec.com/〉.
Weng, 2014, Research status of laser cladding on titanium and its alloys: a review, Mater. Des., 58, 412, 10.1016/j.matdes.2014.01.077
Wu, 2013, Microstructure and wear behavior of laser cladding VC-Cr7C3 ceramic coating on steel substrate, Mater. Des., 49, 10, 10.1016/j.matdes.2013.01.067
Emamian, 2010, Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings, Surf. Coat. Technol., 205, 2007, 10.1016/j.surfcoat.2010.08.087
Gao, 2007, The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy, Appl. Surf. Sci., 253, 5306, 10.1016/j.apsusc.2006.12.001
Zhu, 2008, Biocompatibility of a functionally graded bioceramic coating made by wide‐band laser cladding, J. Biomed. Mater. Res. Part A, 87, 429
Wu, 2015, Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating, Mater. Lett., 141, 207, 10.1016/j.matlet.2014.11.058
Niu, 2016, Process optimization for suppressing cracks in laser engineered net shaping of Al2O3 ceramics, JOM, 69, 557, 10.1007/s11837-016-2191-8
Niu, 2014, Power prediction for laser engineered net shaping of Al2O3 ceramic parts, J. Eur. Ceram. Soc., 34, 3811, 10.1016/j.jeurceramsoc.2014.06.023
Zhou, 2008, Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding, Mater. Sci. Eng.: A, 480, 564, 10.1016/j.msea.2007.07.058
Liu, 2004, Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping, Metall. Mater. Trans. A, 35, 1133, 10.1007/s11661-004-0039-2
Wang, 2002, Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings, Scr. Mater., 47, 57, 10.1016/S1359-6462(02)00086-6
Li, 2014, Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding, Wear, 310, 72, 10.1016/j.wear.2013.12.019
Li, 2014, Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition, Surf. Coat. Technol., 239, 102, 10.1016/j.surfcoat.2013.11.026
Wu, 2009, Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition, J. Rare Earths, 27, 997, 10.1016/S1002-0721(08)60377-4
Niu, 2015, Effect of second-phase doping on laser deposited Al2O3 ceramics, Rapid Prototyp. J., 21, 201, 10.1108/RPJ-12-2014-0167
Ma, 2017, Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating, Ceram. Int., 43, 9622, 10.1016/j.ceramint.2017.04.103
Yan, 2017, Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping, Ceram. Int., 43, 15905, 10.1016/j.ceramint.2017.08.165
Hu, 2017, In-situ ultrafine three-dimensional quasi-continuous network microstructural TiB reinforced titanium matrix composites fabrication using laser engineered net shaping, Mater. Lett., 195, 116, 10.1016/j.matlet.2017.02.112
España, 2010, Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping, Mater. Sci. Eng.: C, 30, 50, 10.1016/j.msec.2009.08.006
Hu, 2017, Laser deposition-additive manufacturing of in situ TiB reinforced titanium matrix composites: TiB growth and part performance, Int. J. Adv. Manuf. Technol., 93, 3409, 10.1007/s00170-017-0769-0
Shamsaei, 2015, An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control, Addit. Manuf., 8, 12, 10.1016/j.addma.2015.07.002
Niu, 2015, Additive manufacturing of ceramic structures by laser engineered net shaping, Chin. J. Mech. Eng., 28, 1117, 10.3901/CJME.2015.0608.078
Wu, 2013, Microstructure and crack in color Al2O3 samples by laser engineered net shaping, J. Chin. Ceram. Soc., 41, 1621
Gutknecht, 2007, Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application, J. Eur. Ceram. Soc., 27, 1547, 10.1016/j.jeurceramsoc.2006.04.123
Ganesh, 2009, Hydrolysis-induced aqueous gelcasting for near-net shape forming of ZTA ceramic composites, J. Eur. Ceram. Soc., 29, 1393, 10.1016/j.jeurceramsoc.2008.08.033
Denry, 2008, State of the art of zirconia for dental applications, Dent. Mater., 24, 299, 10.1016/j.dental.2007.05.007
Bernard, 2010, Direct laser processing of bulk lead zirconate titanate ceramics, Mater. Sci. Eng.: B, 172, 85, 10.1016/j.mseb.2010.04.022
Liu, 2009, Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites, J. Alloy. Compd., 485, 156, 10.1016/j.jallcom.2009.05.112
Mahamood, 2013, Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite, Mater. Des., 50, 656, 10.1016/j.matdes.2013.03.049
Tamirisakandala, 2006, Titanium alloyed with boron, Adv. Mater. Process., 164, 41
Lu, 2008, Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique, Mater. Charact., 59, 912, 10.1016/j.matchar.2007.07.016
Chandrasekar, 2007, Laser surface hardening of titanium-titanium boride (Ti-TiB) metal matrix composite, Scr. Mater., 56, 641, 10.1016/j.scriptamat.2006.11.035
Gopagoni, 2011, Microstructural evolution in laser deposited nickel-titanium-carbon in situ metal matrix composites, J. Alloy. Compd., 509, 1255, 10.1016/j.jallcom.2010.09.208
Hong, 2015, Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: tailored microstructures and enhanced performance, Mater. Sci. Eng.: A, 635, 118, 10.1016/j.msea.2015.03.043
Li, 2000, Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC, Mater. Sci. Eng.: A, 282, 86, 10.1016/S0921-5093(99)00781-9
Watanabe, 2009, Laser surface treatment to improve mechanical properties of cast titanium, Dent. Mater., 25, 629, 10.1016/j.dental.2008.11.006
2012, 161
Xu, 2016, Laser cladding of composite bioceramic coatings on titanium alloy, J. Mater. Eng. Perform., 25, 656, 10.1007/s11665-015-1868-4
Roy, 2008, Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants, Acta Biomater., 4, 324, 10.1016/j.actbio.2007.09.008
Khanna, 2009, Hard coatings based on thermal spray and laser cladding, Int. J. Refract. Met. Hard Mater., 27, 485, 10.1016/j.ijrmhm.2008.09.017
Das, 2012, Laser processing of in situ synthesized TiB–TiN-reinforced Ti6Al4V alloy coatings, Scr. Mater., 66, 578, 10.1016/j.scriptamat.2012.01.010
Van Acker, 2005, Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings, Wear, 258, 194, 10.1016/j.wear.2004.09.041
Wang, 2008, Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding, Surf. Coat. Technol., 202, 3600, 10.1016/j.surfcoat.2007.12.039
Smurov, 2008, Laser cladding and laser assisted direct manufacturing, Surf. Coat. Technol., 202, 4496, 10.1016/j.surfcoat.2008.04.033
Das, 2013, Fabrication of biomedical implants using laser engineered net shaping (LENS™), Trans. Indian Ceram. Soc., 72, 169, 10.1080/0371750X.2013.851619
Balla, 2012, Laser processed TiN reinforced Ti6Al4V composite coatings, J. Mech. Behav. Biomed. Mater., 6, 9, 10.1016/j.jmbbm.2011.09.007
Das, 2016, Tribological, electrochemical and in vitro biocompatibility properties of SiC reinforced composite coatings, Mater. Des., 95, 510, 10.1016/j.matdes.2016.01.143
Amin, 2010, Investigating wettability alteration due to asphaltene precipitation: imprints in surface multifractal characteristics, Appl. Surf. Sci., 256, 6466, 10.1016/j.apsusc.2010.04.036
Bandyopadhyay, 2007, Compositionally graded aluminum oxide coatings on stainless steel using laser processing, J. Am. Ceram. Soc., 90, 1989, 10.1111/j.1551-2916.2007.01651.x
Yang, 2004, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy, Mater. Sci. Eng.: A, 380, 378, 10.1016/j.msea.2004.03.073
Ning, 2018, Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: microstructural and mechanical characterization, J. Manuf. Sci. Eng.-Trans. ASME, 140, 061012, 10.1115/1.4039441
Abramov, 1987, Action of high intensity ultrasound on solidifying metal, Ultrasonics, 25, 73, 10.1016/0041-624X(87)90063-1
Cong, 2017, A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel, Int. J. Mach. Tools Manuf., 121, 61, 10.1016/j.ijmachtools.2017.04.008
L. Moraru, Ultrasound action on strength properties of polycrystalline metals, 2006.
Ning, 2017, Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: a feasibility study, Procedia Manuf., 10, 771, 10.1016/j.promfg.2017.07.074
Toyserkani, 2004
Munz, 2013, 36
Triantafyllidis, 2006, Crack-free densification of ceramics by laser surface treatment, Surf. Coat. Technol., 201, 3163, 10.1016/j.surfcoat.2006.06.032
Zhou, 2008, Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization, Appl. Surf. Sci., 255, 1646, 10.1016/j.apsusc.2008.04.003
Quazi, 2016, Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review, J. Rare Earths, 34, 549, 10.1016/S1002-0721(16)60061-3
Huang, 2015, Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal?, Prog. Mater. Sci., 71, 93, 10.1016/j.pmatsci.2015.01.002