A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33(24):2205–2213. https://doi.org/10.1177/0731684414558325
Ahou YS, Christami MNA, Awad S, et al (2020) Wet oxidation pretreatment effect for enhancing bioethanol production from cassava peels, water hyacinth, and green algae (Ulva). In: AIP Conference Proceedings. AIP Publishing 2255: 030039. https://doi.org/10.1063/5.0013560
Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35(2):489–511. https://doi.org/10.1002/ep.12257
Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. ABAB 130(1–3):599–611. https://doi.org/10.1385/abab:130:1:599
Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263. https://doi.org/10.1016/j.biortech.2010.08.037
Amelia TSM, Govindasamy S, Tamothran AM, Vigneswari S, Bhubalan K (2019) Applications of PHA in agriculture. Biotechnol Appl Polyhydroxyalkanoates. https://doi.org/10.1007/978-981-13-3759-8_13
Arikawa H, Matsumoto K, Fujiki T (2017) Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W. Appl Microbiol Biotechnol 101(20):7497–7507. https://doi.org/10.1007/s00253-017-8470-7
Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustain 12(11):4456. https://doi.org/10.3390/su12114456
Badve MP, Gogate PR, Pandit AB, Csoka L (2014) Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrason Sonochem 21(1):162–168. https://doi.org/10.1016/j.ultsonch.2013.07.006
Bajpai P (2018) Paper and its properties. In: Biermann’s Handbook of Pulp and Paper 3(1): 35–63, Elsevier. https://doi.org/10.1016/b978-0-12-814238-7.00002-7
Barmi A, Bennett A (2016) The hidden problem of landfill leachate. Filtr Sep 53(2): 30–35. https://doi.org/10.1016/S0015-1882(16)30080-5
Bastos Lima MG (2018) Toward multipurpose agriculture: Food, fuels, flex crops, and prospects for a bioeconomy. Glob Environ Polit 18(2):143–150. https://doi.org/10.1162/glep_a_00452
Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106. https://doi.org/10.1016/j.rser.2014.04.047
Berezina N (2013) Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. N Biotechnol 30(2):192–195. https://doi.org/10.1016/j.nbt.2012.05.002
Berg N, Steinberger Y (2012) The role of perennial plants in preserving annual plant complexity in a desert ecosystem. Geoderma 185–186:6–11. https://doi.org/10.1016/j.geoderma.2012.03.023
Bhatia SK, Gurav R, Choi TR et al (2019) Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.09.122
Bhatia SK, Jagtap SS, Bedekar AA et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724
Bhatt R, Patel K, Trivedi U (2011) Biodegradation of poly (3-hydroxyalkanoates). RSC Green Chem. In: A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. Royal Society of Chemistry, UK: 311–331
Bier JM, Verbeek CJR, Lay MC (2011) Life cycle assessments of bioplastics: Applications and issues. Int J Environ Cult Econ Soc Sustain 7(4) :145–158. https://doi.org/10.18848/1832-2077/cgp/v07i04/54966
Bitra VSP, Womac AR, Hart WE, et al (2010) Effect of field harvest method, timing, and storage on enzymatic hydrolysis of liquid AFEX pretreated switchgrass. In: American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010, Pittsburgh. https://doi.org/10.13031/2013.29738
Bitra VSP, Womac AR, Hart WE, Melnichenko G V. (2013) Liquid AFEX pretreatment and enzymatic hydrolysis of switchgrass from different harvest and storage conditions. Trans ASABE. https://doi.org/10.13031/trans.56.10026
Boonwong T, Karnnasuta S, Srinorakutara T (2014) Agricultural wastes potential (pineapple crown, durian peel and sugarcane leaves ) on reducing sugar production by using sulfuric acid pretreatment following enzymatic hydrolysis. KKU Res J 19(3):361–369
Boyandin AN, Prudnikova SV, Karpov VA et al (2013) Microbial degradation of polyhydroxyalkanoates in tropical soils. Int Biodeterior Biodegrad 83:77–84. https://doi.org/10.1016/j.ibiod.2013.04.014
Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. https://doi.org/10.4061/2011/787532
Budisa N, Schulze-Makuch D (2014) Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life 4(3):331–340. https://doi.org/10.3390/life4030331
Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808. https://doi.org/10.3144/expresspolymlett.2014.82
Cannella D, Sveding PV, Jørgensen H (2014) PEI detoxification of pretreated spruce for high solids ethanol fermentation. Appl Energy 132:394–403. https://doi.org/10.1016/j.apenergy.2014.07.038
Carus M, Dammer L (2018) The circular bioeconomy—concepts, opportunities, and limitations. Ind Biotechnol 14(2):83–91. https://doi.org/10.1089/ind.2018.29121.mca
Cavka A, Jönsson LJ (2013) Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.03.014
Chang HM, Wang ZH, Luo HN et al (2014) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)- based scaffolds for tissue engineering. Brazilian J Med Biol Res 47(7):533–539. https://doi.org/10.1590/1414-431x20143930
Chang JKW, Duret X, Berberi V et al (2018) Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production. Front Chem. https://doi.org/10.3389/fchem.2018.00117
Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632. https://doi.org/10.1016/j.jbiosc.2010.07.014
Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446. https://doi.org/10.1039/b812677c
Chen L, Hong F, Yang X, xia, Han S fen, (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. https://doi.org/10.1016/j.biortech.2012.10.029
Chen G-Q, Chen X-Y, Wu F-Q, Chen J-C (2020) Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Adv Ind Eng Polym Res 3(1):1–7. https://doi.org/10.1016/j.aiepr.2019.11.001
Ciesielski PN, Resch MG, Hewetson B et al (2014) Engineering plant cell walls: tuning lignin monomer composition for deconstructable biofuel feedstocks or resilient biomaterials. Green Chem 16:2627. https://doi.org/10.1039/c3gc42422g
Cinelli P, Coltelli MB, Signori F et al (2019) Cosmetic packaging to save the environment: Future perspectives. Cosmetics 6(2):26. https://doi.org/10.3390/cosmetics6020026
Coltelli MB, Panariello L, Morganti P et al (2020) Skin-compatible biobased beauty masks prepared by extrusion. J Funct Biomater 11(2):23. https://doi.org/10.3390/jfb11020023
Coppola G, Gaudio MT, Lopresto CG et al (2021) Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Syst Environ 5:231–251. https://doi.org/10.1007/s41748-021-00208-7
Coz A, Llano T, Cifrián E et al (2016) Physico-chemical alternatives in lignocellulosic materials in relation to the kind of component for fermenting purposes. Materials (basel) 9(7):574. https://doi.org/10.3390/MA9070574
Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11:107–117. https://doi.org/10.1111/gcbb.12586
Dalsasso RR, Pavan FA, Bordignon SE et al (2019) Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochem 85:12–18. https://doi.org/10.1016/j.procbio.2019.07.007
Damrow R, Maldener I, Zilliges Y (2016) The multiple functions of common microbial carbon polymers, glycogen and PHB, during stress responses in the non-diazotrophic cyanobacterium synechocystis sp. PCC 6803. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00966
Darshan M, Nishith D (2014) Recovery and characterization of poly(3-Hydroxybutyric acid) synthesized in Staphylococcus epidermidis. African J Environ Sci Technol 8(6):319–329. https://doi.org/10.5897/ajest2014.1645
Dauvergne P (2018) Why is the global governance of plastic failing the oceans? Glob Environ Chang 51:22–31. https://doi.org/10.1016/j.gloenvcha.2018.05.002
Daza Serna LV, Orrego Alzate CE, Cardona Alzate CA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. https://doi.org/10.1016/j.biortech.2015.09.078
Devi S, Dhaka A, Singh J (2016) Acid and alkaline hydrolysis technologies for bioethanol production : an overview. Int J Adv Technol Eng Sci 4(6):94–106
Di Bartolo A, Infurna G, Dintcheva NT (2021) A review of bioplastics and their adoption in the circular economy. Polymers 13(8):1229. https://doi.org/10.3390/polym13081229
Dietrich K, Dumont MJ, Del Rio LF, Orsat V (2019) Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol 49:161–168. https://doi.org/10.1016/j.nbt.2018.11.004
Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S (2019) The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study. Mar Pollut Bull 142:15–24. https://doi.org/10.1016/j.marpolbul.2019.03.020
Du B, Sharma LN, Becker C et al (2010) Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107(3):430–440. https://doi.org/10.1002/bit.22829
Dussán KJ, Silva DDV, Moraes EJC et al (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438. https://doi.org/10.3303/CET1438073
Ellen MacArthur Foundation (2016) The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Found. http://www.ellenmacarthurfoundation.org/publications. Accessed on 25 Jun 2021
Escobar ELN, da Silva TA, Pirich CL et al (2020) Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00252
Essel R, Carus M (2012) Meta-analysis of 30 LCAs. Bioplastics Mag 7(2):44–46
Estévez-Alonso Á, Pei R, van Loosdrecht MCM et al (2021) Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresour Technol 327:124790. https://doi.org/10.1016/j.biortech.2021.124790
European Bioplastics (2020) Waste management and recovery options for bioplastics. In: Eur. Bioplastics. https://www.european-bioplastics.org/bioplastics/waste-management/ Accessed on 24 Jun 2021
European Commission (2011) Bio-based economy for Europe: state of play and future potential - Part 2: Summary of position papers received in response to the European Commission’s Public on-line Consultation. Biotechnology. https://doi.org/10.2777/67596. https://ec.europa.eu/research/bioeconomy/pdf/biobasedeconomyforeuropepart2_allbrochure_web.pdf. Accessed on 17 Jul 2021
European Commission (2012) Innovating for Sustainable Growth: a Bioeconomy for Europe, EC, 2012. http://ec.europa.eu/research/bioeconomy/pdf/201202_innovating_sustainable_growth_en.pdf . Accessed on 18 Jul 2021
FAO (2015) Food and Agricultural Organization of the United Nations Statistical Database. http://www.fao.org/statistics/en/ Accessed on 24 Jun 2021
Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8:191–208. https://doi.org/10.1089/ind.2012.0015
Gahlawat G, Kumari P, Bhagat NR (2020) Technological advances in the production of polyhydroxyalkanoate biopolymers. Curr Sustain Energy Reports 7:73–83. https://doi.org/10.1007/s40518-020-00154-4
Ganie SA, Ali A, Mir TA, Li Q (2021) Physical and chemical modification of biopolymers and biocomposites. In: Advanced Green Materials, 1st edn: 359–377, Elsevier. https://doi.org/10.1016/b978-0-12-819988-6.00016-1
García-Aparicio MP, Ballesteros I, González A et al (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288. https://doi.org/10.1385/ABAB:129:1:278
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782
Ghasemzadeh K, Jalilnejad E, Basile A (2017) Production of bioalcohol and biomethane. In: Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen, 1st edn, Elsevier Inc: 61–86. https://doi.org/10.1016/B978-0-08-101031-0.00003-X
Gomez JG, Méndez BS, Nikel PI et al (2012) Making Green Polymers Even Greener:Towards Sustainable Production of Polyhydroxyalkanoates from Agroindustrial By-Products. In: Advances in Applied Biotechnology, IntechOpen, UK: 41–62. https://doi.org/10.5772/31847
Gunny AAN, Arbain D, Jamal P (2017) Effect of structural changes of lignocelluloses material upon pre-treatment using green solvents. In: AIP Conference Proceedings. https://doi.org/10.1063/1.4981844
Guo X, Cavka A, Jönsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12(1):93. https://doi.org/10.1186/1475-2859-12-93
Hamam Z, Godin N, Fusco C, Monnier T (2019) Modelling of acoustic emission signals due to fiber break in a model composite carbon/epoxy: Experimental validation and parametric study. Appl Sci 9(3):5124. https://doi.org/10.3390/app9235124
Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130(1):57–66. https://doi.org/10.1016/j.jbiotec.2007.02.012
Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099
He Y, Fang Z, Zhang J et al (2014) De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. Bioresour Technol 169:552–558. https://doi.org/10.1016/j.biortech.2014.06.088
Heimersson S, Morgan-Sagastume F, Peters GM et al (2014) Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. N Biotechnol 31(4):383–393. https://doi.org/10.1016/j.nbt.2013.09.003
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.02
Hong JW, Gam DH, Kim JH et al (2021) Process development for the detoxification of fermentation inhibitors from acid pretreated microalgae hydrolysate. Molecules 26:2435. https://doi.org/10.3390/molecules26092435
Hubbe MA, Lavoine N, Lucia LA, Dou C (2020) Formulating bioplastic composites for biodegradability, recycling, and performance: a review. BioResources 3(1):1–7. https://doi.org/10.15376/biores.16.1.hubbe
Israni N, Shivakumar S (2018) Interface influence of materials and surface modifications. In: Fundamental Biomaterials: Metals 371:409. https://doi.org/10.1016/b978-0-08-102205-4.00021-0
Jaffur N, Jeetah P (2019) Production of low cost paper from Pandanus utilis fibres as a substitution to wood. Sustain Environ Res. https://doi.org/10.1186/s42834-019-0023-6
Jayakody LN, Ferdouse J, Hayashi N, Kitagaki H (2017) Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 37(2):177–189. https://doi.org/10.3109/07388551.2015.112887
Jiang G, Hill DJ, Kowalczuk M et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17(7):1157. https://doi.org/10.3390/ijms17071157
Johnston B, Radecka I, Hill D et al (2018) The microbial production of Polyhydroxyalkanoates from Waste polystyrene fragments attained using oxidative degradation. Polymers 10(9):957. https://doi.org/10.3390/polym10090957
Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009
Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16. https://doi.org/10.1186/1754-6834-6-16
Jungmeier G (2017) The Biorefinery Fact Sheet. Int J Life Cycle Assess 23:1–16. https://doi.org/10.1021/ie502074d/0
Kalmykova Y, Sadagopan M, Rosado L (2018) Circular economy—from review of theories and practices to development of implementation tools. Resour Conserv Recycl 135:190–201. https://doi.org/10.1016/j.resconrec.2017.10.034
Karan H, Funk C, Grabert M et al (2019) Green bioplastics as part of a circular bioeconomy. Trends Plant Sci 24:237–249. https://doi.org/10.1016/j.tplants.2018.11.010
Kehili M, Schmidt LM, Reynolds W et al (2016) Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol Biofuels 9:261. https://doi.org/10.1186/s13068-016-0676-x
Keskin G, Klzll G, Bechelany M et al (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89:1841–1848. https://doi.org/10.1515/pac-2017-0401
Kihara T, Hiroe A, Ishii-Hyakutake M et al (2017) Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene. Biosci Biotechnol Biochem 81(8):1627–1635. https://doi.org/10.1080/09168451.2017.1325314
Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules. https://doi.org/10.3390/molecules23020309
Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007
Kim Y, Kreke T, Hendrickson R et al (2013) Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresour Technol 135:30–38. https://doi.org/10.1016/j.biortech.2012.10.130
Knoblauch J (2017) The environmental toll of plastics. Environ Heal News
Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112(2):252–262. https://doi.org/10.1002/bit.25349
Koller M (2017) Advances in polyhydroxyalkanoate (PHA) production. Bioengineering. https://doi.org/10.3390/bioengineering4040088
Koller M, Sandholzer D, Salerno A et al (2013) Biopolymer from industrial residues: life cycle assessment of poly(hydroxyalkanoates) from whey. Resour Conserv Recycl 73:64–71. https://doi.org/10.1016/j.resconrec.2013.01.017
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001
Kourmentza C, Kornaros M (2016) Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source. Bioresour Technol 222:388–398. https://doi.org/10.1016/j.biortech.2016.10.014
Kourmentza C, Plácido J, Venetsaneas N et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. https://doi.org/10.3390/bioengineering4020055
Kovalcik A, Obruca S, Fritz I, Marova I (2019) Polyhydroxyalkanoates: Their importance and future. BioResources 14:2468–2471. https://doi.org/10.15376/biores.14.2.2468-2471
Kowalczuk MM, Kurcok P, Kawalec M et al (2014) New generation of the polymeric packaging materials susceptible to organic recycling. Chemik 68:686–691
Kubowicz S, Booth AM (2017) Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol 51:12058–12060. https://doi.org/10.1021/acs.est.7b04051
Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. https://doi.org/10.1186/s40643-017-0137-9
Kumar Singh A, Bhati R, Mallick N (2015) Pseudomonas aeruginosa MTCC 7925 as a Biofactory for Production of the Novel SCL-LCL-PHA Thermoplastic from Non-Edible Oils. Curr Biotechnol 4:65–74. https://doi.org/10.2174/2211550104666150414194835
Kunaver M, Jasiukaityte E, Čuk N (2012) Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour Technol 103:360–366. https://doi.org/10.1016/j.biortech.2011.09.051
Lainez M, González JM, Aguilar A, Vela C (2018) Spanish strategy on bioeconomy: towards a knowledge based sustainable innovation. New Biotechnol 40:87–95. https://doi.org/10.1016/j.nbt.2017.05.006
Lamberti FM, Román-Ramírez LA, Wood J (2020) Recycling of bioplastics: routes and benefits. J Polym Environ 28:2551–2571. https://doi.org/10.1007/s10924-020-01795-8
Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenerg 46:36–45. https://doi.org/10.1016/j.biombioe.2012.03.033
Latif R, Wakeel S, Khan NZ et al (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos. https://doi.org/10.1177/0731684418802022
Lee SC, Park S (2016) Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods. Bioresour Technol 216:661–668. https://doi.org/10.1016/j.biortech.2016.06.007
Lee KY, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032
Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65. https://doi.org/10.1016/j.jbiotec.2014.03.020
Li K, Zhang WW, Shi XJ et al (2019) Preparation of novel mcl-PHA by green synthesis: influence of active small molecule via esterification effect on side chain. Mater Res Express. https://doi.org/10.1088/2053-1591/ab166c
Licciardello G, Catara AF, Catara V (2019) Production of polyhydroxyalkanoates and extracellular products using Pseudomonas corrugata and P. mediterranea: a review. Bioengineering 6:105. https://doi.org/10.3390/bioengineering6040105
Lissens G, Klinke H, Verstraete W et al (2004) Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol. Environ Technol 25(6):647–655. https://doi.org/10.1080/09593330.2004.9619354
Llano T, Quijorna N, Coz A (2017) Detoxification of a lignocellulosic waste from a pulp mill to enhance its fermentation prospects. Energies 10(3):348. https://doi.org/10.3390/en10030348
Lobo FCM, Franco AR, Fernandes EM, Reis RL (2021) An overview of the antimicrobial properties of lignocellulosic materials. Molecules. https://doi.org/10.3390/molecules26061749
Lopes MSG, Gomez JGC, Taciro MK et al (2014) Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 41:1353–1369. https://doi.org/10.1007/s10295-014-1485-5
López NI, Pettinari MJ, Nikel PI, Méndez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol 93:73–106. https://doi.org/10.1016/bs.aambs.2015.06.001
Ma Y, Zhao X, Zhang H, Wang Z (2011) Comprehensive utilization of the hydrolyzed productions from rice hull. Ind Crops Prod 33(2):403–408. https://doi.org/10.1016/j.indcrop.2010.11.001
Ma Q, Gao X, Bi X et al (2021) Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2021.105967
Madkour MH, Heinrich D, Alghamdi MA et al (2013) PHA recovery from biomass. Biomacromol 14:2963–2972. https://doi.org/10.1021/bm4010244
MarketsandMarkets (2019) Polyhydroxyalkanoate (PHA) Market. In: marketsandmarkets. https://www.marketsandmarkets.com/ Accessed on 14 Jun 2021
Markl E, Grünbichler H, Lackner M (2019) Cyanobacteria for PHB Bioplastics Production: A Review. In: Algae, 2nd edn, IntechOpen, UK. https://doi.org/10.5772/intechopen.81536
Martín C, Wu G, Wang Z et al (2018) Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresour Technol 262:242–250. https://doi.org/10.1016/j.biortech.2018.04.074
Masood F, Chen P, Yasin T, Hameed A (2015) Novel Delivery System for Anticancer Drug Based on Short-Chain- Length Polyhydroxyalkanoate Nanoparticles. US2015/0118293A1. U.S. Patent.
Matsakas L, Nitsos C, Raghavendran V et al (2018) A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol Biofuels 11:1–14. https://doi.org/10.1186/s13068-018-1163-3
Maulida, Siagian M, Tarigan P (2016) Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. In: Journal of Physics: Conference Series 10. https://doi.org/10.1088/1742-6596/710/1/012012
McAdam B, Fournet MB, McDonald P, Mojicevic M (2020) Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 12:1–20. https://doi.org/10.3390/polym12122908
Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. https://doi.org/10.1039/d0gc01647k
Menčík P, Přikryl R, Stehnová I et al (2018) Effect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly(3-hydroxybutyrate)/Poly(lactic acid)/plasticizer biodegradable blends for three-dimensional (3D) print. Materials 11:1–20. https://doi.org/10.3390/ma11101893
Michelin M, Ximenes E, de Lourdes Teixeira de Moraes Polizeli M, Ladisch MR, (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278. https://doi.org/10.1016/j.biortech.2015.08.120
Mielenz JR (2020) Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. In: Bioenergy, 2nd Edn, Elsevier BV, pp 545–571. https://doi.org/10.1016/b978-0-12-815497-7.00027-0
Millati R, Niklasson C, Taherzadeh MJ (2002) Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochem 38:515–522. https://doi.org/10.1016/S0032-9592(02)00176-0
Mohanrasu K, Premnath N, Siva Prakash G et al (2018) Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J Photochem Photobiol B Biol 185:55–65. https://doi.org/10.1016/j.jphotobiol.2018.05.014
Mondylaksita K, Ferreira JA, Millati R et al (2020) Recovery of high purity lignin and digestible cellulose from oil palm empty fruit bunch using low acid-catalyzed organosolv pretreatment. Agronomy 10:1–15. https://doi.org/10.3390/agronomy10050674
Morohoshi T, Ogata K, Okura T, Sato S (2018) Molecular characterization of the bacterial community in biofilms for degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films in seawater. Microbes Environ 33:19–25. https://doi.org/10.1264/jsme2.ME17052
Mousavioun P, Halley PJ, Doherty WOS (2013) Thermophysical properties and rheology of PHB/lignin blends. Ind Crops Prod 50:270–275. https://doi.org/10.1016/j.indcrop.2013.07.026
Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282. https://doi.org/10.1016/j.micres.2016.07.010
Mudliar SN, Vaidya AN, Suresh Kumar M et al (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Technol Environ Policy 10(3):255–262. https://doi.org/10.1007/s10098-007-0100-0
Narayanan KB, Suresh AK, Sakthivel N (2014) Eco-friendly Polymer Nanocomposites. In: Eco-friendly polymer nanocomposites: processing and properties, Springer Nature, Switzerland, pp 215–231. https://doi.org/10.1007/978-81-322-2470-9
Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H (2015) LCA of PHA production—identifying the ecological potential of bio-plastic. Chem Biochem Eng Q 29: 299–305. https://doi.org/10.15255/CABEQ.2014.2262
Ning P, Yang G, Hu L et al (2021) Recent advances in the valorization of plant biomass. Biotechnol Biofuels. https://doi.org/10.1186/s13068-021-01949-3
Numata K, Doi Y (2012) Biosynthesis of Polyhydroxyalkanaotes by a Novel Facultatively Anaerobic Vibrio sp. under Marine Conditions. Mar Biotechnol 14:323–331. https://doi.org/10.1007/s10126-011-9416-1
Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q 29, 135–144. https://doi.org/10.15255/CABEQ.2014.2253
Ong SY, Chee JY, Sudesh K (2017) Degradation of Polyhydroxyalkanoate (PHA): a Review. J Sib Fed Univ Biol 10(2): 211–225. https://doi.org/10.17516/1997-1389-0024
Panaitescu DM, Nicolae CA, Frone AN, et al (2017) Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 134:44810(1–14). https://doi.org/10.1002/app.44810
Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Crit Rev Biotechnol 31:20–31. https://doi.org/10.3109/07388551003757816
Pathak VM (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess. https://doi.org/10.1186/s40643-017-0145-9
Pathak B, Disha N, Bhawana P, H FM, (2012) Production of Biodegradable Plastic from Waste Using Microbial Technology. Int J Res Chem Environ 2:118–123
Patri AS, McAlister L, Cai CM et al (2019) CELF significantly reduces milling requirements and improves soaking effectiveness for maximum sugar recovery of Alamo switchgrass over dilute sulfuric acid pretreatment. Biotechnol Biofuels 12:1–11. https://doi.org/10.1186/s13068-019-1515-7
Patrício PSDO, Pereira FV, Dos Santos MC et al (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. https://doi.org/10.1002/app.37811
Pérez JA, Ballesteros I, Ballesteros M et al (2008) Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647. https://doi.org/10.1016/j.fuel.2008.06.009
Pielhop T, Amgarten J, Von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: The effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:1–13. https://doi.org/10.1186/s13068-016-0567-1
Prajapati K, Nayak R, Shukla A et al (2021) Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics. J Polym Environ 29:2013–2032. https://doi.org/10.1007/s10924-020-02025-x
Pu N, Wang MR, Li ZJ (2020) Characterization of polyhydroxyalkanoate synthases from the marine bacterium Neptunomonas concharum JCM17730. J Biotechnol 319:60–73. https://doi.org/10.1016/j.jbiotec.2020.06.002
Qi Q, Liang Q (2015) Single-Cell Biorefinery. Industrial Biorefineries & White Biotechnology, Chapter 9:369–388. https://doi.org/10.1016/b978-0-444-63453-5.00011-2
Qiang Z, Thomsen AB (2012) Effect of different wet oxidation pretreatment conditions on ethanol fermentation from corn stover. In: Advances in Intelligent and Soft Computing, Vol. 134 AISC, pp. 953–958. https://doi.org/10.1007/978-3-642-27537-1_113
Qing Y, Sabo R, Wu Y, Cai Z (2012) High-performance cellulose nanofibril composite films. BioResources 7:3064–3075. https://doi.org/10.15376/biores.7.3.3064-307
Rajendran K, Drielak E, Sudarshan Varma V et al (2018) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8:471–483. https://doi.org/10.1007/s13399-017-0269-3
Râpə M, Darie-Nitə RN, Grosu E et al (2015) Effect of plasticizers on melt processability and properties of PHB. J Optoelectron Adv Mater 17:1778–1784
Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms. Carbohydr Res 385:45–57. https://doi.org/10.1016/j.carres.2013.08.029
Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK (2018) A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresour Technol 248:272–279. https://doi.org/10.1016/j.biortech.2017.06.039
Reddy N, Yang Y (2015) Fibers from Banana Pseudo-Stems. In: Innovative Biofibers from Renewable Resources, Springer Berlin Heidelberg, pp 25–27. https://doi.org/10.1007/978-3-662-45136-6_7
Reis KC, Pereira L, Melo ICNA et al (2015) Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Mater Res 18:546–552. https://doi.org/10.1590/1516-1439.318114
Rigouin C, Lajus S, Ocando C et al (2019) Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell Fact 18:1–9. https://doi.org/10.1186/s12934-019-1140-y
Rodrigues PR, Nunes JMN, Lordelo LN, Druzian JI (2019) Assessment of polyhydroxyalkanoate synthesis in submerged cultivation of cupriavidus necator and burkholderia cepacia strains using soybean as substrate. Brazilian J Chem Eng 36:73–83. https://doi.org/10.1590/0104-6632.20190361s20170267
Roque LR, Morgado GP, Nascimento VM et al (2019) Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel 242:775–782. https://doi.org/10.1016/j.fuel.2018.12.130
Sanda T, Hasunuma T, Matsuda F, Kondo A (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol 102:7917–7924. https://doi.org/10.1016/j.biortech.2011.06.028
Sanhueza C, Acevedo F, Rocha S et al (2019) Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 124:102–110. https://doi.org/10.1016/j.ijbiomac.2018.11.068
Sashiwa H, Fukuda R, Okura T et al (2018) Microbial degradation behavior in seawater of polyester blends containing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Mar Drugs 16(34):1–11. https://doi.org/10.3390/md16010034
Shahria S (2019) Fabrication and Property Evaluation of Hemp–flax Fiber Reinforced Hybrid Composite. Chem Mater Eng 7:17–23. https://doi.org/10.13189/cme.2019.070202
Shahzad K, Kettl KH, Titz M et al (2013) Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Policy 15:525–536. https://doi.org/10.1007/s10098-013-0608-4
Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33:1799–1813. https://doi.org/10.1016/j.biotechadv.2015.10.006
Shi Y, Yan X, Li Q et al (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242. https://doi.org/10.1016/j.procbio.2016.10.004
Siacor FDC, Lobarbio CFY, Taboada EB (2021) Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Production by Dilute Acid Treatment and Enzymatic Hydrolysis. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-020-03387-7
Silva LF, Taciro MK, Raicher G et al (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int J Biol Macromol 71:2–7. https://doi.org/10.1016/j.ijbiomac.2014.06.065
Singh Saharan B, Grewal A, Kumar P (2014) Biotechnological production of Polyhydroxyalkanoates: a review on trends and latest developments. Chinese J Biol. https://doi.org/10.1155/2014/802984
Sjulander N, Kikas T (2020) Origin, impact and control of lignocellulosic inhibitors in bioethanol production—a review. Energies. https://doi.org/10.3390/en13184751
Smith R L, Bissell J, Mcgrath C (2011) PHA-producing bacteria. US41784610P. US Patent.
Soil Survey Staff (2016) Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Surv 1–2. http://websoilsurvey.nrcs.usda.gov/app/ Accessed on 14 May 2021
Suet T, Amelia M, Govindasamy S et al (2019) Biotechnological Applications of Polyhydroxyalkanoates. Applications of PHA in Agriculture 102:347–361. https://doi.org/10.1016/j.biortech.2018.01.031
Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.06
Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621
To R, Bioenergy IE a (2013) Status of Advanced Biofuels Demonstration Facilities in 2012 A REPORT TO IEA BIOENERGY TASK 39. IEA Bioenergy 1–209. https://task39.ieabioenergy.com/publications/. Accessed on 29 May 2021
Travaini R, Marangon-Jardim C, Colodette JL, et al (2015) Ozonolysis. In: Pretreatment of Biomass: Processes and Technologies, pp. 105–135. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800080-9.00007-4
Umesh M, Thazeem B (2019) Biodegradation studies of polyhydroxyalkanoates extracted from Bacillus subtilis NCDC 0671. Res J Chem Environ 23:107–114
Uppugundla N, Da Costa SL, Chundawat SPS et al (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEXTM pretreated corn stover. Biotechnol Biofuels 7:1–14. https://doi.org/10.1186/1754-6834-7-72
Valentino F, Moretto G, Lorini L et al (2019) Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind Eng Chem Res 58:12149–12158. https://doi.org/10.1021/acs.iecr.9b01831
Vandeponseele A, Draye M, Piot C, Chatel G (2020) Subcritical water and supercritical carbon dioxide: Efficient and selective eco-compatible solvents for coffee and coffee by-products valorization. Green Chem 22:8544–8857. https://doi.org/10.1039/d0gc03146a
Vargas-rechia CG, Reicher F, Sierakowski MR et al (2015) A profile of the South African table grape market value chain. Bioresour Technol 6:1–4. https://doi.org/10.1002/9781119038467.ch
Venkata Mohan S, Dahiya S, Amulya K et al (2019) Can circular bioeconomy be fueled by waste biorefineries—a closer look. Bioresour Technol Reports 7:1–11. https://doi.org/10.1016/j.biteb.2019.100277
Venkateswar Reddy M, Venkata Mohan S (2012) Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour Technol 103:313–321. https://doi.org/10.1016/j.biortech.2011.09.040
Verhoeven MD, De Valk SC, Daran JMG et al (2018) Fermentation of glucose-xylose-Arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy075
Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Procedia Environ Sci 35:701–708. https://doi.org/10.1016/j.proenv.2016.07.069
Vico G, Brunsell NA (2018) Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv Water Resour 112:189–202. https://doi.org/10.1016/j.advwatres.2017.12.014
Vigneswari S, Rashid NSBT, Amirul AAA (2019) Bio-degradation of poly:hydroxyalkanoates (PHA) films in soil and lake environment. Malaysian Appl Biol 48:193–198
Vigneswari S, Lee TS, Bhubalan K, Amirul AA (2015) Extracellular polyhydroxyalkanoate depolymerase by Acidovorax sp. DP5. Enzyme Res. https://doi.org/10.1155/2015/212159
Visconti D, Fiorentino N, Cozzolino E et al (2020) Use of giant reed (Arundo donax L.) to control soil erosion and improve soil quality in a marginal degraded area. Ital J Agron 15:332–338. https://doi.org/10.4081/ija.2020.1764
Vishwakarma V, Uthaman S (2019) Environmental impact of sustainable green concrete. In: Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications, 1st edn, Elsevier Science, USA, pp 241–255. https://doi.org/10.1016/B978-0-12-817854-6.00009-X
Vogli L, Macrelli S, Marazza D et al (2020) Life cycle assessment and energy balance of a novel polyhydroxyalkanoates production process with mixed microbial cultures fed on pyrolytic products of wastewater treatment sludge. Energies 13:1–27. https://doi.org/10.3390/en13112706
Vrana Špoljarić I, Lopar M, Koller M et al (2013) Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482–494. https://doi.org/10.1016/j.biortech.2013.01.126
Wang X, Yomano LP, Lee JY et al (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A 110:4021–4026. https://doi.org/10.1073/pnas.1217958110
Wang S, Yang J (2017) Isoprenoids production from lipid-extracted microalgal biomass residues using engineered E. coli. Molecules 22:960. https://doi.org/10.3390/molecules22060960
Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 59:91–103. https://doi.org/10.1016/j.indcrop.2015.02.011
Werker A, Bengtsson S, Johansson P, et al (2020) Production Quality Control of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent Extraction. In: The Handbook of Polyhydroxyalkanoates 1st edn, Taylor and Francis Group, Boca Raton, pp 58. https://doi.org/10.1201/9780429296635-13
Wikandari R, Sanjaya AP, Millati R, et al (2019) Fermentation inhibitors in ethanol and biogas processes and strategies to counteract their effects. In: Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd edn. Elsevier, USA, pp 461–499. https://doi.org/10.1016/B978-0-12-816856-1.00020-8
Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66. https://doi.org/10.1016/j.biortech.2012.10.050
Winnacker M (2019) Polyhydroxyalkanoates: recent advances in their synthesis and applications. Eur J Lipid Sci Technol 121:1900101. https://doi.org/10.1002/ejlt.201900101
Wörmeyer K, Ingram T, Saake B et al (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102:4157–4164. https://doi.org/10.1016/j.biortech.2010.11.063
Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose Nanofibrils derived from raw cellulose materials. Int J Polym Sci. https://doi.org/10.1155/2018/7923068
Yagi H, Ninomiya F, Funabashi M, Kunioka M (2013) Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polym Degrad Stab 98:1182–1187. https://doi.org/10.1016/j.polymdegradstab.2013.03.010
Yu L, De Alwis Weerasekera H, Forattini Lemos Igreja M, Sankar V, Williamson M J, Sanjay Soman S, Chow K (2019) Method for producing polyhydroxyalkanoates (pha) from organic waste. US1458808. US patent
Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026
Zhang Y, Huang M, Su J et al (2019) Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1354-6
Zhao B-H, Chen J, Yu H-Q et al (2017) Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: hyacinth as an example. Front Environ Sci Eng 11:17. https://doi.org/10.1007/s11783-017-0965-z
Zhao F, Liu X, Kong A et al (2019) Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci Rep. https://doi.org/10.1038/s41598-019-39321-z
Zhijiang C, Yi X, Haizheng Y et al (2016) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Mater Sci Eng C 58:757–767. https://doi.org/10.1016/j.msec.2015.09.048
Zhong ZW, Song B, Huang CX (2009) Environmental impacts of three polyhydroxyalkanoate (pha) manufacturing processes. Mater Manuf Process 24:519–523. https://doi.org/10.1080/10426910902740120
Zhou Z, Liu D, Zhao X (2021) Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111169