A review on dendrimers in preparation and modification of membranes: progress, applications, and challenges

Materials Today Chemistry - Tập 23 - Trang 100683 - 2022
O. Karatas1,2, R. Keyikoglu1,2, N. Atalay Gengec3, V. Vatanpour4,5, A. Khataee1,6
1Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
2Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey
3Department of Chemical Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
4Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
5Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
6Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran

Tài liệu tham khảo

Taniguchi, 2015, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes, J. Membr. Sci., 475, 175, 10.1016/j.memsci.2014.10.015 Mulder, 1996 Borgohain, 2019, PH responsive carboxymethyl chitosan/poly(amidoamine) molecular gate membrane for CO2/N2 separation, ACS Appl. Mater. Interfaces, 11, 42616, 10.1021/acsami.9b15044 Bolto, 2009, Crosslinked poly(vinyl alcohol) membranes, Prog. Polym. Sci., 34, 969, 10.1016/j.progpolymsci.2009.05.003 Greenlee, 2009, Reverse osmosis desalination: water sources, technology, and today's challenges, Water Res., 43, 2317, 10.1016/j.watres.2009.03.010 Cath, 2006, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281, 70, 10.1016/j.memsci.2006.05.048 Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043 Mehta, 2005, Permeability and selectivity analysis for ultrafiltration membranes, J. Membr. Sci., 249, 245, 10.1016/j.memsci.2004.09.040 Kuiper, 1998, Development and applications of very high flux microfiltration membranes, J. Membr. Sci., 150, 1, 10.1016/S0376-7388(98)00197-5 Díez, 2020, A critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes, Nanotechnol. Environ. Eng., 5, 1, 10.1007/s41204-020-00077-x Arefi-Oskoui, 2020, Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater, Separ. Purif. Technol., 238, 10.1016/j.seppur.2019.116495 Kochkodan, 2014, Polymeric membranes: surface modification for minimizing (Bio)Colloidal fouling, Adv. Colloid Interface Sci., 206, 116, 10.1016/j.cis.2013.05.005 Orooji, 2017, Excellent biofouling alleviation of thermoexfoliated vermiculite blended poly(ether sulfone) ultrafiltration membrane, ACS Appl. Mater. Interfaces, 9, 30024, 10.1021/acsami.7b06646 Vatanpour, 2020, Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite, Carbohydr. Polym., 256, 117413 Upadhyaya, 2018, Chemical modification of membrane surface — overview, Curr. Opin. Chem. Eng., 20, 13, 10.1016/j.coche.2018.01.002 Kazama, 2005, Greenhouse gas control technologies 7, 1947 Lu, 2017, Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity, Nat. Commun., 8, 1, 10.1038/s41467-017-01838-0 Aoki, 2005, New macromolecular architectures for permselective membranes - gas permselective membranes from dendrimers and enantioselectively permeable membranes from one-handed helical polymers, Polym. J., 37, 717, 10.1295/polymj.37.717 Abbasi, 2014, Dendrimers: synthesis, applications, and properties, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-247 Amariei, 2017, Dendrimer-functionalized electrospun nanofibres as dual-action water treatment membranes, Sci. Total Environ., 601–602, 732, 10.1016/j.scitotenv.2017.05.243 Caminade, 2015, Dendrimers and hyperbranched polymers, Chem. Soc. Rev., 44, 3870, 10.1039/C5CS90049B Vögtle, 2009 Sajid, 2018, Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review, Separ. Purif. Technol., 191, 400, 10.1016/j.seppur.2017.09.011 Mlynarczyk, 2017, Dendrimer structure diversity and tailorability as a way to fight infectious diseases, Nanostruct. Mater. Appl. InTech, 111 Grayson, 2001, Convergent dendrons and dendrimers: from synthesis to applications, Chem. Rev., 101, 3819, 10.1021/cr990116h Wang, 2016, Bimetallic dendrimer-encapsulated nanoparticle catalysts, Polym. Rev., 56, 486, 10.1080/15583724.2015.1110167 Soleyman, 2015, Impact of dendritic polymers on nanomaterials, Polym. Chem., 6, 10, 10.1039/C4PY01208A Wazir, 2020, Dendrimer assisted dye-removal: a critical review of adsorption and catalytic degradation for wastewater treatment, J. Mol. Liq., 315, 113775, 10.1016/j.molliq.2020.113775 Tomalia, 1986, Dendritic macromolecules: synthesis of starburst dendrimers, Macromolecules, 19, 2466, 10.1021/ma00163a029 Gheybi, 2020, Graphene-dendritic polymer hybrids: synthesis, properties, and applications, J. Iran. Chem. Soc., 17, 735 Majoros, 2006, PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality, Biomacromolecules, 7, 572, 10.1021/bm0506142 Helms, 2006, The dendrimer effect in homogeneous catalysis, Adv. Synth. Catal., 348, 1125, 10.1002/adsc.200606095 Barman, 2018, Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications, J. Mater. Chem. B, 6, 2368, 10.1039/C7TB03344C Gorain, 2017, The use of nanoscaffolds and dendrimers in tissue engineering. Drug discov, Today, 22, 652 Meng, 2009, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res., 43, 1489, 10.1016/j.watres.2008.12.044 Nasrollahi, 2021, Photocatalytic-membrane technology: a critical review for membrane fouling mitigation, J. Ind. Eng. Chem., 93, 101, 10.1016/j.jiec.2020.09.031 Zhao, 2013, Modification of polyethersulfone membranes - a review of methods, Prog. Mater. Sci., 58, 76, 10.1016/j.pmatsci.2012.07.002 Kang, 2014, Application and modification of poly(vinylidene fluoride) (PVDF) membranes - a review, J. Membr. Sci., 463, 145, 10.1016/j.memsci.2014.03.055 Safarpour, 2020, A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes, J. Ind. Eng. Chem., 82, 31, 10.1016/j.jiec.2019.11.002 Xu, 2017, Recent advances in forward osmosis (FO) membrane: chemical modifications on membranes for FO processes, Desalination, 419, 101, 10.1016/j.desal.2017.06.007 Otitoju, 2018, Progress in the modification of reverse osmosis (RO) membranes for enhanced performance, J. Ind. Eng. Chem., 67, 52, 10.1016/j.jiec.2018.07.010 Duan, 2012, Poly(Amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO 2 capture, J. Membr. Sci., 423–424, 107, 10.1016/j.memsci.2012.07.037 Kovvali, 2001, Dendrimer liquid membranes: CO2 separation from gas mixtures, Ind. Eng. Chem. Res., 40, 2502, 10.1021/ie0010520 Kovvali, 2002, Carbon dioxide separation with novel solvents as liquid membranes, Ind. Eng. Chem. Res., 41, 2287, 10.1021/ie010757e Kai, 2008, Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas, Separ. Purif. Technol., 63, 524, 10.1016/j.seppur.2008.06.012 Taniguchi, 2008, Facile fabrication of a novel high performance CO2 separation membrane: immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks, J. Membr. Sci., 322, 277, 10.1016/j.memsci.2008.05.067 Duan, 2019, Effect of carbonic anhydrase on Co2 separation performance of thin poly(amidoamine) dendrimer/poly(ethylene glycol) hybrid membranes, Membranes, 9, 10.3390/membranes9120167 Duan, 2014, Development of poly(amidoamine) dendrimer/poly(ethylene glycol) hybrid membranes for CO2 capture at elevated pressures, Energy Proc., 63, 167, 10.1016/j.egypro.2014.11.017 Duan, 2013, Development of poly(amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures, Energy Proc., 37, 924, 10.1016/j.egypro.2013.05.187 Cha, 2001, Preparation and characterization of dendrimer layers on poly(dimethylsiloxane) films, Macromolecules, 34, 6631, 10.1021/ma0104276 Fail, 2002, Controlled attachment of PAMAM dendrimers to solid surfaces, Langmuir, 18, 264, 10.1021/la0111598 Johal, 2013, Development of novel nanocomposite membrane for water purification, Artif. Cells Nanomed. Biotechnol., 41, 359, 10.3109/21691401.2012.762368 Wang, 2016, Surface chemistry, topology and desalination performance controlled positively charged NF membrane prepared by polydopamine-assisted graft of starburst PAMAM dendrimers, RSC Adv., 6, 4673, 10.1039/C5RA25047A Miller, 2017, Surface modification of water purification membranes, Angew. Chem. Int. Ed., 56, 4662, 10.1002/anie.201601509 Zhang, 2013, Polyamidoamine dendronized hollow fiber membranes in the recovery of heavy metal ions, ACS Appl. Mater. Interfaces, 5, 1907, 10.1021/am400155b Bojaran, 2019, Novel ultrafiltration membranes with the least fouling properties for the treatment of veterinary antibiotics in the pharmaceutical wastewater, Polym. Adv. Technol., 30, 1716, 10.1002/pat.4603 Cao, 2020, Treatment of Lasalocid A, Salinomycin and Semduramicin as ionophore antibiotics in pharmaceutical wastewater by PAMAM-coated membranes, Environ. Technol. Innov., 20, 101103, 10.1016/j.eti.2020.101103 Fetanat, 2021, Machine learning for designing of thin-film nanocomposite membrane, Separ. Purif. Technol., 118383, 10.1016/j.seppur.2021.118383 Zhu, 2015, Poly(Amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal, J. Membr. Sci., 487, 117, 10.1016/j.memsci.2015.03.033 Vatanpour, 2020, Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement, Desalination, 491, 114442, 10.1016/j.desal.2020.114442 Bao, 2019, Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration, Water Res., 153, 1, 10.1016/j.watres.2018.12.067 Bao, 2019, Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis, J. Membr. Sci., 584, 9, 10.1016/j.memsci.2019.04.063 Chen, 2018, Dendritic molecules give excellent long-lasting desalination fouling resistance to reverse osmosis membrane by generating an amine-rich layer, J. Appl. Polym. Sci., 47368, 1 Saenz De Jubera, 2013, Development and performance characterization of a polyamide nanofiltration membrane modified with covalently bonded aramide dendrimers, Environ. Sci. Technol., 47, 8642 Ledesma-García, 2008, Preparation and study of cellulose acetate membranes modified with linear polymers covalently bonded to starburst polyamidoamine dendrimers, J. Appl. Polym. Sci., 110, 2898, 10.1002/app.28833 Amariei, 2017, Poly(Amidoamine) dendrimers grafted on electrospun poly(acrylic acid)/poly(vinyl alcohol) membranes for host-guest encapsulation of antioxidant thymol, J. Mater. Chem. B, 5, 6776, 10.1039/C7TB01498H Nikolaeva, 2015, Hydrogel surface modification of reverse osmosis membranes, J. Membr. Sci., 476, 264, 10.1016/j.memsci.2014.11.051 Li, 2017, Positively charged nanofiltration membrane with dendritic surface for toxic element removal, ACS Sustain. Chem. Eng., 5, 784, 10.1021/acssuschemeng.6b02119 Zhang, 2012, Poly(Amidoamine) dendronized hollow fiber membranes: synthesis, characterization, and preliminary applications as drug delivery devices, Acta Biomater., 8, 1316, 10.1016/j.actbio.2011.11.027 Duan, 2014, Effect of cross-linking on the mechanical and thermal properties of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation, Membranes, 4, 200, 10.3390/membranes4020200 Kheirieh, 2018, Application and modification of polysulfone membranes, Rev. Chem. Eng., 34, 657, 10.1515/revce-2017-0011 Xiao, 2005, Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films, Ind. Eng. Chem. Res., 44, 3059, 10.1021/ie048837g Saenz De Jubera, 2012, Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers, Environ. Sci. Technol., 46, 9592, 10.1021/es301392w Gao, 2013, Nanofiltration membranes with modified active layer using aromatic polyamide dendrimers, Adv. Funct. Mater., 23, 598, 10.1002/adfm.201201004 Sarkar, 2010, Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes, J. Membr. Sci., 349, 421, 10.1016/j.memsci.2009.12.005 Chung, 2004, PAMAM dendrimer-induced cross-linking modification of polyimide membranes, Langmuir, 20, 2966, 10.1021/la034610z Shao, 2004, Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers, J. Membr. Sci., 238, 153, 10.1016/j.memsci.2004.03.034 Wei, 2020, Fabrication of PH-sensitive superhydrophilic/underwater superoleophobic poly(vinylidene fluoride)- graft-(SiO2Nanoparticles and PAMAM dendrimers) membranes for oil-water separation, ACS Appl. Mater. Interfaces, 12, 19130, 10.1021/acsami.9b22881 Duan, 2006, Development of PAMAM dendrimer composite membranes for CO2 separation, J. Membr. Sci., 283, 2, 10.1016/j.memsci.2006.06.026 Algarra, 2014, Characterization of an engineered cellulose based membrane by thiol dendrimer for heavy metals removal, Chem. Eng. J., 253, 472, 10.1016/j.cej.2014.05.082 Malinga, 2013, Cyclodextrin-dendrimer functionalized polysulfone membrane for the removal of humic acid in water, J. Appl. Polym. Sci., 130, 4428, 10.1002/app.39728 Lianchao, 2006, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci., 269, 84, 10.1016/j.memsci.2005.06.021 Mansourpanah, 2015, Efficacy of different generations and concentrations of PAMAM-NH2 on the performance and structure of TFC membranes, React. Funct. Polym., 93, 178, 10.1016/j.reactfunctpolym.2015.04.010 Sum, 2018, Enhancing the solvent-dendrimer miscibility at the interface and its impact on the thin film composite membrane, J. Ind. Eng. Chem., 58, 229, 10.1016/j.jiec.2017.09.031 Liu, 2018, Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties, RSC Adv., 8, 15102, 10.1039/C8RA01374H Xu, 2012, Structure and properties of polyamidoamine/polyacrylonitrile composite nanofiltration membrane prepared by interfacial polymerization, Separ. Purif. Technol., 96, 229, 10.1016/j.seppur.2012.05.033 Bharali, 2018, Effect of additives on morphology and permeability of dendrimer membrane for CO 2 separation, Int. Res. J. Eng. Technol., 5, 418 Sterescu, 2008, Boltorn-modified polyimide gas separation membranes, J. Membr. Sci., 310, 512, 10.1016/j.memsci.2007.11.028 Kotte, 2018, A facile and scalable route to the preparation of catalytic membranes with in situ synthesized supramolecular dendrimer particle hosts for Pt(0) nanoparticles using a low-generation PAMAM dendrimer (G1-NH2) as precursor. ACS appl, Mater. Interfaces, 10, 33238, 10.1021/acsami.8b11351 Jin, 2012, Preparation and characterization of a novel PA-SiO 2 nanofiltration membrane for raw water treatment, Desalination, 298, 34, 10.1016/j.desal.2012.04.024 Jiang, 2020, High-flux, anti-fouling dendrimer grafted PAN membrane: fabrication, performance and mechanisms, J. Membr. Sci., 596, 117743, 10.1016/j.memsci.2019.117743 Amy, 2008, Fundamental Understanding of Organic Matter Fouling of Membranes, Desalination, 231, 10.1016/j.desal.2007.11.037 Seidel, 2002, Coupling between chemical and physical interactions in natural organic matter ( NOM ) fouling of nanofiltration membranes, Implications Fouling Control, 203, 245 Zhang, 2013, Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment, Colloid. Surf. A Physicochem. Eng. Asp., 436, 207, 10.1016/j.colsurfa.2013.06.027 Asempour, 2018, Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes, J. Membr. Sci., 563, 470, 10.1016/j.memsci.2018.05.070 Gengec, 2016, Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent, Appl. Surf. Sci., 383, 33, 10.1016/j.apsusc.2016.04.160 Vatanpour, 2017, Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci., 396, 1478, 10.1016/j.apsusc.2016.11.195 Xu, 2013, Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations, Desalination, 328, 83, 10.1016/j.desal.2013.08.022 Bao, 2021, Ammonium ultra-selective membranes for wastewater treatment and nutrient enrichment: interplay of surface charge and hydrophilicity on fouling propensity and ammonium rejection, Water Res., 190, 116678, 10.1016/j.watres.2020.116678 Taghizadeh, 2021, Deep eutectic solvents in membrane science and technology: fundamental, preparation, application, and future perspective, Separ. Purif. Technol., 258, 118015, 10.1016/j.seppur.2020.118015 Ansari, 2017, Forward osmosis as a platform for resource recovery from municipal wastewater - a critical assessment of the literature, J. Membr. Sci., 529, 195, 10.1016/j.memsci.2017.01.054 Xu, 2015, Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting, Desalination, 365, 398, 10.1016/j.desal.2015.03.026 Hu, 2017, Impacts of inorganic draw solutes on the performance of thin-film composite forward osmosis membrane in a microfiltration assisted anaerobic osmotic membrane bioreactor, RSC Adv., 7, 16057, 10.1039/C7RA01524K Mi, 2008, Chemical and Physical Aspects of Organic Fouling of Forward Osmosis Membranes, J. Membr. Sci, 320, 292, 10.1016/j.memsci.2008.04.036 Gao, 2013, 598 Duan, 2005, Crosslinking of collagen with dendrimers, J. Biomed. Mater. Res., 75, 510, 10.1002/jbm.a.30475 Sung, 1999, Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study, J. Biomed. Mater. Res., 46, 520, 10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9 Jin, 2012, Synthesis of a novel composite nano Fi Ltration membrane incorporated SiO 2 nanoparticles for oily wastewater desalination, Polymer, 53, 5295, 10.1016/j.polymer.2012.09.014 Sun, 2007, A novel composite nanofiltration (NF) membrane prepared from glycolchitin/poly(acrylonitrile) (PAN) by epichlorohydrin cross-linking, J. Membr. Sci., 297, 51, 10.1016/j.memsci.2007.02.027 Koulivand, 2019, Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles, Chem. Eng. Res. Des., 145, 64, 10.1016/j.cherd.2019.03.003 Zhang, 2018, 29455 Saxena, 2009, Membrane-based techniques for the separation and purification of proteins: an overview, Adv. Colloid Interface Sci., 145, 1, 10.1016/j.cis.2008.07.004 Van der Bruggen, 2003, Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes, Environ. Sci. Technol., 37, 3733, 10.1021/es0201754 Kotte, 2015, Mixed matrix PVDF membranes with in situ synthesized PAMAM dendrimer-like particles: a new class of sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration, Environ. Sci. Technol., 49, 9431, 10.1021/acs.est.5b01594 Sivasankar, 2018, Dendrimer supported Fe/Ni bimetallic composites immobilized in polyethersulfone membranes for effective degradation of arginine containing microcystins, Eur. Polym. J., 98, 456, 10.1016/j.eurpolymj.2017.11.049 Zhang, 2019, Preparation of PVDF/Hyperbranched-Nano- palygorskite composite membrane for efficient removal of heavy metal ions, Polymers, 11, 10.3390/polym11010156 Li, 2014, The effect of silver-PAMAM dendrimer nanocomposites on the performance of PVDF membranes, Desalination, 338, 115, 10.1016/j.desal.2014.02.001 Swaidan, 2014, Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1, J. Membr. Sci., 457, 95, 10.1016/j.memsci.2014.01.055 Kovvali, 2000, Dendrimer membranes: a CO2-selective molecular gate [2], J. Am. Chem. Soc., 122, 7594, 10.1021/ja0013071 Li, 2016, Application of crosslinking in gas separation membranes, Sci. Adv. Mater., 8, 1155, 10.1166/sam.2016.2751 Seiler, 2006, Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering, Fluid Phase Equil., 241, 155, 10.1016/j.fluid.2005.12.042 Kaneko, 2006, Synthesis of poly(phenylacetylene)-based polydendrons consisting of a phenyleneethynylene repeating unit, and oxygen/nitrogen permeation behavior of their membranes, J. Membr. Sci., 278, 365, 10.1016/j.memsci.2005.11.023 Kai, 2013, Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture, Energy Proc., 37, 961, 10.1016/j.egypro.2013.05.191 Kouketsu, 2007, PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer, J. Membr. Sci., 287, 51, 10.1016/j.memsci.2006.10.014 Ito, 2019, Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa), J. Polym. Res., 26, 10.1007/s10965-019-1769-6 Borgohain, 2020, Thermally stable and moisture responsive carboxymethyl chitosan/dendrimer/hydrotalcite membrane for CO2 separation, J. Membr. Sci., 608, 118214, 10.1016/j.memsci.2020.118214 Doustkhah, 2017, Design of chitosan-dithiocarbamate magnetically separable catalytic nanocomposites for greener aqueous oxidations at room temperature, Mol. Catal., 434, 7, 10.1016/j.mcat.2017.01.031 Duan, 2008, PAMAM dendrimer composite membrane for CO2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer, Desalination, 234, 278, 10.1016/j.desal.2007.09.095 Yegani, 2007, Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures, J. Membr. Sci., 291, 157, 10.1016/j.memsci.2007.01.011 Matsuyama, 1999, Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane, J. Membr. Sci., 163, 221, 10.1016/S0376-7388(99)00183-0 Duan, 2019, Development and fabrication of PAMAM-based composite membrane module with a gutter layer of chitosan/PAA polymer double network for CO2 separation, IOP Conf. Ser. Mater. Sci. Eng., 479 Taniguchi, 2014, CO2 separation with nano-thick polymeric membrane for precombustion, Energy Proc., 63, 235, 10.1016/j.egypro.2014.11.025