A review on compressed air energy storage: Basic principles, past milestones and recent developments

Applied Energy - Tập 170 - Trang 250-268 - 2016
Marcus Budt1, Daniël De Wolf2, Roland Span3, Jinyue Yan4,5
1Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Division: Energy, Osterfelder Str. 3, 46047 Oberhausen, Germany
2Heliocentris Industry GmbH, R&D Clean Energy Solutions, Rudower Chaussee 29, 12489 Berlin, Germany
3Thermodynamics, Ruhr-Universität Bochum, Universitätsstr. 150, 44805 Bochum, Germany
4School of Chemical Engineering and Technology, KTH Royal Institute of Technology, Teknikringen 42, SE-100 44 Stockholm, Sweden
5School of Sustainable Development of Society and Technology, Mälardalen University, SE-721 23 Västerås, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Deutsche Energie-Agentur GmbH (dena). Druckluftsysteme in Industrie und Gewerbe: Ein Ratgeber zur systematischen energetischen Modernisierung; 2012.

Kalhammer, 1976, Energy storage, Ann Rev Energy, 1, 311, 10.1146/annurev.eg.01.110176.001523

Gay FW. Means for storing fluids for power generation; 2,433,896; 1948.

Mattick W, Haddenhorst HG, Weber O, Stys ZS. Huntorf – The World’s First 290-mw gas turbine air-storage peaking plant. In: Proceedings of the American power conference; 1975. p. 322–30.

Herbst CH, Hoffeins H, Stys ZS. Huntorf 290 MW Air storage System Energy Transfer (ASSET) plant design, construction and commissioning. In: Proceedings of the compressed air energy storage symposium; 1978, p. 17.

Eldridge, 1976

Glendenning I, Chew PE, Grant R, Glanwille R, Moye MH. Technical and economic assessment of advanced compressed air storage (ACAS) concepts; 1979.

Allen, 1985

Zaloudek FR, Reilly RW. An assessment of second-generation compressed air energy storage concepts. PNL-3978; 1982.

PNNL. Technology Assessment Report for the Soyland Power Cooperative, Inc., Compressed Air Energy Storage System (CAES): Environmental Science and Engineering. Richland, WA; 1982.

Berk, 1983, CAES and UPH technologies: an uncertain future, Underground Space, 6, 342

Pollak R. History of first U.S. Compressed Air Energy Storage (CAES) plant (110MW 26h): volume 2: Construction. Palo Alto; 1994.

Elliott, 1995, Electric-energy storage hinges on three leading technologies, IEEE Trans Power Apparatus Syst, 42

Smith, 2001, The first CAES merchant, Modern Power Syst, 21, 21

Tuschy, 2004, Entwicklung der Gasturbinen in der Luftspeicher-Technologie, VGB PowerTech, 4, 84

Marchese D. Norton energy storage and CAES: resiliency in uncertain markets; 2008.

NETL. Seneca Compressed Air Energy Storage (CAES) Project – Final Phase 1 Technical Report; 2012.

DOE, NETL. Final environmental assessment for the pacific gas and electric company (PG&E) compressed air energy storage (CAES) compression testing phase project. San Joaquin County, California. (DOE/EA-1752); 2014.

Schainker, 2012, Sacramento Municipal Utility District (SMUD) compressed air energy storage: plant phase 1: feasibility and conceptual engineering analysis, Technical Update

SMUD. SMUD 2013 ten-year transmission assessment plan. Final; 2013.

CH2MHILL. Prevention of significant deterioration: greenhouse gas permit application; 2012.

Kou L. Energy storage activities at New York power authority. In: APPA national conference; 2012.

International PV Equipment Association (IPVEA), 2014, STORAGE-AS-SERVICE MODEL TAKES OFF IN THE US, Energy Storage J, 2, 9

The Associated Press. NPPD to test underground air storage. Lincoln Journal Star 2012, 16 July 2012; Available from: <www.JournalStar.com>.

Gaelectric Energy Storage Ltd., Gaelectric energy storage: The missing link. Report; 2015.

Rice AT, Li PY. Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability. In: ASME symposium on fluid power and motion control, vol. 1; 2011. P. 145–52.

Brody R. ISOTHERMAL CAES: site-anywhere compressed air energy storage. Berlin; 2012.

Glendenning, 1981, Compressed air storage, Phys Technol, 12, 103, 10.1088/0305-4624/12/3/I05

Lund, 2009, The role of compressed air energy storage (CAES) in future sustainable energy systems, Energy Convers Manage, 50, 1172, 10.1016/j.enconman.2009.01.032

Mason, 2008, Coupling PV and CAES power plants to transform intermittent PV electricity into a dispatchable electricity source, Prog Photovolt: Res Appl, 16, 649, 10.1002/pip.858

Jakiel, 2007, Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES, Int J Energy Technol Policy, 5, 296, 10.1504/IJETP.2007.014736

Wolf, 2011

Doetsch C, Budt M, Wolf D, Kanngießer A. Adiabates Niedertemperatur-Druckluftspeicherkraftwerk zur Unterstützung der Netzintegration von Windenergie. Abschlussbericht zu FKZ 0325211; 2012.

2011

Tuschy I. Druckluftspeicherkraftwerke als Option zur Netzintegration erneuerbarer Energiequellen: Ein Vergleich der Konzepte. In: Technische Universität Dresden, editor. 40. Kraftwerkstechnisches Kolloquium 2008. Dresden: Technische Universität Dresden Institut für Energietechnik; 2008.

Qin, 2014, Liquid piston compression efficiency with droplet heat transfer, Appl Energy, 114, 539, 10.1016/j.apenergy.2013.10.005

VDI. VDI-Richtlinie 4670: Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. Berlin; 2003.

Bücker, 2003, Thermodynamic property models for moist air and combustion gases, J Eng Gas Turbines Power, 125, 374, 10.1115/1.1520154

Rowse, 2008

Lemmon, 2000, Thermodynamic properties of air and mixtures of nitrogen, argon and oxygen from 60 to 2000 K at pressures to 2000 MPa, J Phys Chem Ref Data, 29, 331, 10.1063/1.1285884

Gernert, 2015, EOS–CG: a Helmholtz energy mixture model for humid gases and CCS mixtures, J Chem Thermodynam

Goff, 1945, Thermodynamic properties of moist air, Heating, Piping, and Air Conditioning ASHVE, 17, 334

Hyland, 1983, Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa, ASHRAE Trans, 89, 520

Rabinovich VA, Beketov VG. Moist gases: thermodynamic properties. New York; 1995.

Ji, 2006, Thermodynamic properties for humid gases from 298 to 573K and up to 200bar, Appl Therm Eng, 26, 251, 10.1016/j.applthermaleng.2005.05.005

Tulegenov, 2007, Intermolecular potential and second virial coefficient of the water–nitrogen complex, J Chem Phys, 126, 94305, 10.1063/1.2446843

Herrmann S, Kretzschmar H, Teske V, Vogel E, Ulbig P, Span R, et al. PTB-Bericht: Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von feuchter Luft für energietechnische Prozessmodellierungen. Braunschweig; 2009.

Ji, 2003, Survey of experimental data and assessment of calculation methods of properties for the air–water mixture, Appl Therm Eng, 23, 2213, 10.1016/S1359-4311(03)00191-1

Herrmann, 2010, Properties of humid air for calculating power cycles, J Eng Gas Turbines Power

Kunz, 2012, The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J Chem Eng Data, 57, 3032, 10.1021/je300655b

Radgen P. 30 years compressed air energy storage plant huntorf – experiences and outlook. In: 3rd international renewable energy storage conference. Berlin; 2008. p. 18.

BBC, 1986, Operating experience with the huntorf air-storage gas turbine power station, Brown Boveri Rev, 73, 297

Quast P. The huntorf plant: Over 3 years operating experience with compressed air caverns. In: Proceedings of international conference on seasonal thermal energy storage and compressed air energy storage, vol. 1; 1981.

Collins, 1993, Commercial options for energy storage multiply. Hydro, wind and solar, Power Apparatus Syst IEEE Trans

Nakhamkin, 1992, AEC 110 MW CAES plant: status of project, ASME J Eng Gas Turbines Power, 114, 695, 10.1115/1.2906644

Kentschke T, Barth H. Druckluftspeicherung. In: Dezentrale Energiespeicherung – Schlüssel zur wirtschaftlichen Entfaltung Erneuerbarer Energien: EUROSOLAR Europäisch Vereinigung für Erneuerbare Energien e.V; 2003.

El-Shahat Fayed Abd-El Fattah Mohamed. Uncooled compressed air storage for balancing of fluctuating wind energy. Dissertation. Clausthal; 2005.

Kentschke T. Druckluftmaschinen als Generatorantrieb in Warmluftspeichern. Dissertation. Clausthal; 2004.

Wolf, 2014, LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage, Appl Energy, 125, 158, 10.1016/j.apenergy.2014.03.013

Bieber M, Marquardt R, Moser P. The ADELE Project: development of an adiabatic CAES plant towards marketability. In: 5th international renewable energy storage conference: General Electric Global Research; 2010. p. 17.

Buffa, 2013, Exergy and exergoeconomic model of a ground-based CAES plant for peak-load energy production, Energies, 6, 1050, 10.3390/en6021050

de Biasi, 2009, Fundamental analyses to optimize adiabatic CAES plant efficiencies, Gas Turbine World, 39

Kreid DK. Technical and economic feasibility analysis of the no-fuel compressed air energy storage concept; 1976.

Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S. Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proceedings of the European wind energy conference; 2004.

Zunft, 2005, Adiabate Druckluftspeicherkraftwerke: Ein Element zur netzkonformen Integration von Windenergie, Energiewirtschaftliche Tagesfragen (et), 55, 451

Nowi A, Jakiel C, Moser P, Zunft S. Adiabate Druckluftspeicherkraftwerke zur netzverträglichen Windstromintegration. In: Fortschrittliche Energiewandlung und -anwendung. Strom- und Wärmeerzeugung – Kommunale und industrielle Energieanwendungen. Leverkusen; 2006.

Gatzen, 2008

Moser P. Status der Entwicklung des adiabaten Druckluftspeichers ADELE. In: Leopoldina-Symposium. Halle; 2014.

Barbour, 2015, Adiabatic compressed air energy storage with packed bed thermal energy storage, Appl Energy, 155, 804, 10.1016/j.apenergy.2015.06.019

Marquardt R, Hoffmann S, Pazzi S, Klafki M, Zunft S. AA-CAES: Opportunities and challenges of advanced adiabatic compressed-air energy storage technology as a balancing tool in interconnected grids. In: Technische Universität Dresden, editor. 40. Kraftwerkstechnisches Kolloquium 2008. Dresden: Technische Universität Dresden Institut für Energietechnik; 2008.

Moser, 2013

Dreißigacker, 2013, A thermo-mechanical model of packed-bed storage and experimental validation, Appl Energy, 111, 1120, 10.1016/j.apenergy.2013.03.067

Kanngießer A. Entwicklung eines generischen Modells zur Einsatzoptimierung von Energiespeichern für die techno-ökonomische Bewertung stationärer Speicheranwendungen. Dissertation. Dortmund; 2013.

Tiedemann, 2008

Hobson, 1981

Nakhamkin M. Thermal energy storage for advanced compressed-air energy storage plants; 1988.

Gil, 2010, State of the art on high temperature thermal energy storage for power generation. Part 1 – concepts, materials and modellization, Renew Sustain Energy Rev, 14, 31, 10.1016/j.rser.2009.07.035

Karthikeyan, 2014, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications, Energy Convers Manage, 78, 74, 10.1016/j.enconman.2013.10.042

Peng, 2015, Modeling on heat storage performance of compressed air in a packed bed system, Appl Energy, 160, 1, 10.1016/j.apenergy.2015.09.029

Freund S, Schainker R, Moreau R. Commercial concepts for adiabatic compressed air energy storage. In: 7th international renewable energy storage conference and exhibition; 2012.

Milazzo A. Optimization of the configuration in a CAES-TES system. In: Bejan A, Grazzini G, editors. Shape and thermodynamics: international workshop; 2008.

Grazzini G, Milazzo A. Exergy analysis of a case with thermal energy storage. In: Eindhofen University of Technology, editor. 5th European thermal-sciences conference EUROTHERM; 2008.

Grazzini, 2008, Thermodynamic analysis of CAES/TES systems for renewable energy plants, Renew Energy, 33, 1998, 10.1016/j.renene.2007.12.003

Grazzini, 2012, A thermodynamic analysis of multistage adiabatic CAES, Proc IEEE, 100, 461, 10.1109/JPROC.2011.2163049

Lemofouet-Gatsi S. Investigation and optimisation of hybrid electricity storage systems based on compressed air and supercapacitors. Dissertation. Lausanne; 2006.

McBride, 2013

Täubner F. Druckgasspeicher als Alternative zur Bleibatterie. Leipzig: rosseta Technik GmbH; 2005.

Brückmann P, Cyphelly I, Lindegger M. Machbarkeit des Druckluftspeicherkonzeptes BOP-B: Wärmetauscher und Motgen. Davos; 2006.

Marcus D. Fuel-free geologic compressed air energy storage from renewable power: Task # 1 Deliverable Report; 2011.

Gillhaus A, Crotogino F, Haubrich HJ, Hübner S, Siemes P. Verbesserte Integration großer Windstrommengen durch Zwischenspeicherung mittels CAES. Wissenschaftliche Studie/Endbericht; 2006.

Nielsen, 2009, Dynamic simulation of an innovative compressed air energy storage plant – detailed modelling of the storage cavern

Nielsen, 2013

Wiles, 1983

Allen, 1985, CAES: the underground portion, IEEE Trans Power Apparatus Syst, PAS-104, 10.1109/TPAS.1985.319078

Dinelli G, Lozza G, Macchi E. A feasibility study of CAES plants for peak load generation. In: 22nd intersociety energy conversion engineering conference. NASA; 1987. p. 417–24.

King M, Moridis G. Technical feasibility of compressed-air energy storage in an aquifer storage vessel. In: Sandia National Laboratoies, editor. Electrical energy storage applications and technologies conference.

Schulte BH, Critelli NJR., Holst K, Huff G. Lessons from Iowa: development of a 270 Megawatt compressed air energy storage project in midwest independent system operator: a study for the DOE energy storage systems program; 2012.

Nakayama A, Yamachi H. Thermodynamic analysis of efficiency and safety of underground air energy storage system. Report of Research Center for Urban Safety and Security, Kobe University 1999;3:247–54.

Shibanuma T, Hokari N, Tsuchida M. Compressed air energy storage gas turbine pilot plant. In: Combustion engine technology for ship propulsion, power generation, rail traction: volume 1: diesel engines-product development slow/medium/high speed, gas turbines-product development new machines/applications; 2001. p. 240–8.

Terashita, 2005, Airtight butyl rubber under high pressures in the storage tank of CAES-G/T system power plant, J Appl Polym Sci, 95, 173, 10.1002/app.20815

Yamashita Y, Takano K. Practical tests for a New Urban CAES Tank. Report of Obayashi Corporation 1998;57:5.

Dengel AJ. Druckluftspeicher zur Energiespeicherung in stillgelegten Salzbergwerken und zur Stabilisierung der Grubenhohlräume. 3. Wissenschaftstage des Bundesumweltministeriums zur Offshore-Windenergienutzung, 17.11.2009, Oldenburg.

DOE energy storage database. Pollegio-Loderio Tunnel ALACAES Demonstration Plant; 2014.

Damjanac B, Carranza-Torres C, Dexter R. Technial review of the lined rock cavern (LRC) concept and design methodology: steel liner response; 2002.

Tengborg P, Johansson J, Durup JG. Storage of highly compressed gases in underground Lined Rock Caverns – More than 10 years of experience. In: Proceedings of the world tunnel congress: tunnels for a better Life; 2014.

Kim H, Rutqvist J, Choi B. Feasibility analysis of underground compressed air energy storage in lined rock caverns using the tough-flac simulator. In: Proceedings of the TOUGH symposium; 2012.

Pimm, 2014, Design and testing of energy bags for underwater compressed air energy storage, Energy, 66, 496, 10.1016/j.energy.2013.12.010

Hydrostor. Hydrostor activates world’s first utility-scale underwater compressed air energy storage system. Press Release; 2015.

Strahan D. Liquid air in the energy and transport systems: opportunities for industry and innovation in the UK. Full Report; 2013.

Chino, 2000, Evaluation of Energy Storage Method Using Liquid Air, Heat Transfer – Asian Res, 29, 347, 10.1002/1523-1496(200007)29:5<347::AID-HTJ1>3.0.CO;2-A

Stöver B, Rehfeldt S, Alekseev A, Stiller C. Process engineering and thermodynamic evaluation of concept for liquid air energy storage. In: PennWell Corporation, editor, Power-Gen Europe 2013; 2013.

Li, 2014, Load shifting of nuclear power plants using cryogenic energy storage technology, Appl Energy, 113, 1710, 10.1016/j.apenergy.2013.08.077

Guizzi, 2015, Thermodynamic analysis of a liquid air energy storage system, Energy, 93, 1639, 10.1016/j.energy.2015.10.030

Morgan, 2015, Liquid air energy storage – analysis and first results from a pilot scale demonstration plant, Appl Energy, 137, 845, 10.1016/j.apenergy.2014.07.109