A review on-analytical tools in proteomics

Springer Science and Business Media LLC - Tập 14 - Trang 201-221 - 2023
Archana K. Thikekar1, Vishal S. Rathod1, Varsharani P. Panchal1, Samruddhi A. Raut1, Rohan S. Raut1, Kishor S. Jain1
1Department of Pharmaceutical Chemistry, Rajmata Jijau Shikshan Prasarak Mandal’s College of Pharmacy, Pune, India

Tóm tắt

Proteomics is an analytical technique employed for the identification and quantitative analysis of total protein content in a cell, tissue or organism using various methods and tools. Proteomics succeeds in genomics (study of set of DNA) and transcriptomics (study of set of RNA) of biological systems. A proteome is an array of proteins generated by a particular organism, system, or biological condition. Though, an organism’s genome is more or less constant, a proteome is more complicated than a genome as cells generate a variety of sets of protein at different times or under different situations, such as cellular development and differentiation, cell cycle or carcinogenesis. Therefore, new approaches for capturing crucial biological information have been developed. Proteomics-based technologies are used for several research purposes including detection of various diagnostic markers, vaccine candidates as well as understanding pathogenicity mechanisms, changes in expression patterns in response to various signals, and interpretation of functional protein pathways in various diseases. Analytical methods like two-dimensional gel electrophoresis, mass spectrometry and various hyphenated techniques have been developed. This review highlights various analytical tools used in qualitative and quantitative analysis of proteomics and novel approaches for the use of proteomics in disease diagnostics, as well as their other applications. This review shall help academicians and researchers as a reference guide to update their knowledge on analytical tools for proteomics as well as the application of proteomics.

Tài liệu tham khảo

Acikara O (2013) Ion-exchange chromatography and its applications. Column Chromatogr 55:182–196. https://doi.org/10.5772/55744 Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. https://doi.org/10.1038/nature01511 Asad Y, Ahmad S, Rungrotmongkol T, Ranaghan K, Azam S (2018) Immuno-informatics driven proteome-wide investigation revealed novel peptide-based vaccine targets against emerging multiple drug resistant Providencia stuartii. J Mol Graph Model 80:238–250. https://doi.org/10.1016/j.jmgm.2018.01.010 Aslam B, Basit M, Nisar M, Khurshid M, Rasool M (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55:182–196. https://doi.org/10.1093/chromsci/bmw167 Assadsangabi A, Evans C, Corfe B, Lobo A (2019) Application of proteomics to inflammatory bowel disease research: Current status and future perspectives. Gastroenterol Res Pract 17:1426954. https://doi.org/10.1155/2019/1426954 Aydin S (2015) A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72:4–15. https://doi.org/10.1016/j.peptides.2015.04.012 Azarkan M, Huet J, Baeyens-Volant D, Looze Y, Vandenbussche G (2007) Affinity chromatography: a useful tool in proteomics studies. J Chromatogr A 849:81–90. https://doi.org/10.1016/j.jchromb.2006.10.056 Baid A (2016) ELISA- A mini review. J Pharm Anal 5(2):118–125 Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031. https://doi.org/10.1007/s00216-007-1486-6 Bass J, Wilkinson D, Rankin D, Phillips B, Szewczyk N, Smith K, Atherton P (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25. https://doi.org/10.1111/sms.12702 Bunaciu A, Udriştioiu E, Aboul-Enein H (2015) X-Ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45:289–299. https://doi.org/10.1080/10408347.2014.949616 Chan J, Zhou L, Chan E (2015) The isotope-coded affinity tag method for quantitative protein profile comparison and relative quantitation of cysteine redox modifications. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps2302s82 Chandramouli K, Qian P (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteom 1(1):1-22. https://doi.org/10.4061/2009/239204 Chen C (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624(1):16–36. https://doi.org/10.1016/j.aca.2008.06.017 Chen X, Wei S, Ji Y, Guo X, Yang F (2015) Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 15(18):3175–3192. https://doi.org/10.1002/pmic.201500108 Cho W (2007) Proteomics technologies and challenges. Genom Proteom Bioinform 5(2):77–85. https://doi.org/10.1016/S1672-0229(07)60018-7 Crowther J (2008) Enzyme Linked Immunosorbent Assay (ELISA). In: Walker JM, Rapley R (eds) Molecular bio methods handbook. Springer Protocols Handbooks, 2nd edn. Humana Press, p 657–682 https://doi.org/10.1007/978-1-60327-375-6_37 Darbeau R (2006) Nuclear magnetic resonance (NMR) spectroscopy: A review and a look at its use as a probative tool in deamination chemistry. Appl Spectrosc Rev 41(4):401–425. https://doi.org/10.1080/05704920600726175 Delahunty C, Yates JR III (2007) MudPIT: multidimensional protein identification technology. BioTechniques 43(5):563–567. https://doi.org/10.2144/000112604 DeLaney K, Li L (2019) Data independent acquisition mass spectrometry method for improved neuropeptidomic coverage in crustacean neural tissue extracts. Anal Chem 91:5150–5158. https://doi.org/10.1021/acs.analchem.8b05734 Dias R, de Azevedo W (2008) Molecular docking algorithms. Curr Drug Targets 9(12):1040–1047. https://doi.org/10.2174/13894500878694943 Dudhe P, Kshirsagar M, Yerlekar A (2014) A review on 2D gel electrophoresis: A protein identification technique. Int J Comput Sci Inf Tec 5(1):856–862.Corpus ID: 14224159 Ebere E, Wirnkor V, Isiuku B (2019) Applications of column, paper, thin layer and ion exchange chromatography in purifying samples: mini review. SF J Pharm Anal Chem 2(2):1–6. https://scienceforecastoa.com Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1:80–91. https://doi.org/10.1111/j.1432-1033.1967.tb00047.x Elliott M, Smith D, Parker C, Borchers C (2009) Current trends in quantitative proteomics. J Mass Spectrom 44(12):1637–1660. https://doi.org/10.1002/jms.1692 Englbrecht C, Facius A (2005) Table 1. A List of Widely Used Software for 2D Gel Analyses. Bioinformatics Challenges in Proteomics. Nucleic Acids Res 582–585 Flory MR, Griffin TJ, Martin D, Aebersold R (2002) Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 20(12):s23–s29. https://doi.org/10.1016/S1471-1931(02)00203-3 Godovac-Zimmermann J, Brown L (2001) Perspectives for Mass Spectrometry and Functional Proteomics. Mass Spectrum Rev 20(1):1–57.https://doi.org/10.1002/1098-2787(2001)20:1<1::AID-MAS1001>3.0.CO;2-J Gottschalk U (2011) Overview of downstream processing in the biomanufacturing industry. In: Comprehensive Biotechnology, 2nd edn, vol 3. Academic Press, pp 669–682.https://doi.org/10.1016/B978-0-08-088504-9.00238-5 Graham R, Sweredoski M, Hess S (2011) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-an Introduction for Biologists. Curr Proteomics 8(1):2–16. https://doi.org/10.2174/157016411794697354 Greco V, Piras C, Pieron L, Ronci M, Putignani L, Roncada P, Urbani A (2018) Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteom 15(8):683–696. https://doi.org/10.1080/14789450.2018.1505510 Guerrera I, Kleiner O (2005) Application of mass spectrometry in proteomics. Bio Sci Rep 25(1–2):71–93. https://doi.org/10.1007/s10540-005-2849-x Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. https://doi.org/10.1038/13690 Hage D, Matsuda R (2015) Affinity chromatography: a historical perspective. Methods Mol Biol 286:1–19. https://doi.org/10.1007/978-1-4939-2447-9_1 Hall D, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021 Hanash S, Qiu J, Faca V (2009) Application of proteomics to disease diagnostics. In: Molecular diagnostics, 2nd edn. Elsevier Ltd, pp 285–291. https://doi.org/10.1016/B978-0-12-374537-8.00018-3 Held D, Kilz P (2021) Size-exclusion chromatography as a useful tool for the assessment of polymer quality and determination of macromolecular properties. Chem Teacher Inter 3:77–103. https://doi.org/10.1515/cti-2020-0024 Hernández-Santoyo A, Tenorio-Barajas Y, VictorAltuzar V, Vivanco-Cid H, Mendoza-Barrera C (2013) Protein-Protein and Protein-Ligand Docking. In: (Ed.) Protein Engineering - Technology and Application. IntechOpen 62–81. https://doi.org/10.5772/56376 Hill JM (2008).NMR Screening for Rapid Protein Characterization in Structural Proteomics. In: Kobe B, Guss M, Huber T (Eds) Structural Proteomics. Methods Mol Biol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_29 Hong P, Koza S, Bouvier E (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950. https://doi.org/10.1080/10826076.2012.743724 Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L (2021) NMR-based methods for protein analysis. Anal Chem 93(4):1866–1879. https://doi.org/10.1021/acs.analchem.0c03830 Joos T (2004) Protein Microarray Technology. Expert Rev Proteom 1:1–3. https://doi.org/10.1586/14789450.1.1.1 Kavallaris M, Marshall G (2005) Proteomics and disease: opportunities and challenges. Med J Aust 182(11):575–579. https://doi.org/10.5694/j.1326-5377.2005.tb06817.xc Koh C, Porras P, Aranda B, Hermjakob H, Orchard S (2012) Analyzing protein-protein interaction networks. J Proteome Res 11(4):2014–2031. https://doi.org/10.1021/pr201211w Kuhlman B, Bradley P (2019) Advances in protein structure prediction and design. Nat Rev Mol Cell Biol 20:681–697. https://doi.org/10.1038/s41580-019-0163-x Kumar C, Mann M (2009) Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett 583(11):1703–1712. https://doi.org/10.1016/j.febslet.2009.03.035 Lee W, Lee K (2004) Applications of affinity chromatography in proteomics. Anal Chem 324:1–10. https://doi.org/10.1016/j.ab.2003.08.031 Li H, Han J, Pan J, Liu T, Parker C, Borchers C (2017) Current trends in quantitative proteomics–an update. J Mass Spectrom 52(5):319–341. https://doi.org/10.1002/jms.3932 Li KW, Gonzalez-Lozano MA, Koopmans F, Smit AB (2020) Recent developments in Data Independent Acquisition (DIA) mass spectrometry: application of quantitative analysis of the brain proteome. Front Mol Neurosci 13:564446. https://doi.org/10.3389/fnmol.2020.564446 Lively J (2011) Bioinformatics analysis for quantitative proteomics. Ph. D dissertation, Creative Proteomics, Division of Creative Dynamics, NY 11967, USA, pp 1–18 Macklin A, Khan S, Kislinger T (2020) Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin Proteom 17:17. https://doi.org/10.1186/s12014-020-09283-w Mahmood T, Yang PC (2012) Western blot: Technique, theory, and trouble shooting. North Amer J Med Sci 4(9):429–434. https://doi.org/10.4103/1947-2714.100998 Matei C, Tampa M, Caruntu C, Ion R, Georgescu S, Dumitrascu G (2014) Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res 47(1):33. https://doi.org/10.1186/0717-6287-47-33 Mazzeo M, Siciliano R (2016) Proteomics for the authentication of fish species. J Proteom 147:119–124. https://doi.org/10.1016/j.jprot.2016.03.007 Meleady P (2018) Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol Biol 1664:3–14. https://doi.org/10.1007/978-1-4939-7268-5_1 Moore C, Ajala O, Zhu H (2016) Applications in high-content functional protein microarrays. Curr Opin Chem Biol 30:21–27. https://doi.org/10.1016/j.cbpa.2015.10.013 Pappireddi N, Martin L, Wühr M (2019) A review on quantitative multiplexed proteomics. Chem Bio Chem 20(10):1210–1224. https://doi.org/10.1002/cbic.201800650 Patel R (2019) A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J Fungi (Basel) 5(1):4. https://doi.org/10.3390/jof5010004 Pietrogrande M, Marchetti N, Righetti DF (2006) Decoding 2D-PAGE complex maps: Relevance to proteomics. J Chromatogr 833(1):51–62. https://doi.org/10.1016/j.jchromb.2005.12.051 Ramazi S, Zahiri J (2021) Posttranslational modifications in proteins: resources, tools and prediction methods. Database 2021. baab012. https://doi.org/10.1093/database/baab012 Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H (2004) Quantitative proteomics: a review of different methodologies. Eur J Mass Spectr 10(3):335–348. https://doi.org/10.1255/ejms.600 Sahin E, Roberts C (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. Methods Mol Biol 899:403–423. https://doi.org/10.1007/978-1-61779-921-1_25 Schmidt A, Forne I, Imhof A (2014) Bioinformatic analysis of proteomics data. BMC Syst Biol 8(S2):1–7. https://doi.org/10.1186/1752-0509-8-S2-S3 Shin J, Lee W, Lee W (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteom 5(4):589–601. https://doi.org/10.1586/14789450.5.4.589 Singh K, Gupta A, Bharti C, Sharma H (2021) Emerging techniques of western blotting for purification and analysis of protein. Future J Pharm Sci 7(1):239. https://doi.org/10.1186/s43094-021-00386-1 Smyth M, Martin J (2000) Review X- Ray crystallography. Mol Pathol 53(1):8–14. https://doi.org/10.1136/mp.53.1.8 Sutandy F, Qian J, Chen S, Zhu H (2013) Overview of protein microarrays. Curr Protoc Protein Sci 27(1):2711–2727. https://doi.org/10.1002/0471140864.ps2701s72 Tao SC, Chen CS, Zhu H (2007) Applications of protein microarray technology. Comb Chem High Throughput Screen 10(8):706–718. https://doi.org/10.2174/138620707782507386 Tilocca B, Britti D, Urbani A, Roncada P (2020) Computational immune proteomics approach to target COVID-19. J Proteome Res 19(11):4233–4241. https://doi.org/10.1021/acs.jproteome.0c00553 Ullah H (2012) The role of ion exchange chromatography in purification and characterization of molecules. In: Kilislioğlu A (ed) Ion Exchange Technologies. pp 331–342. https://doi.org/10.5772/52537 Vélez-Bermúdez I, Wen T, Lan P, Schmidt W (2016) Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based protein profiling in plants. Methods Mol Biol 1450:213–221. https://doi.org/10.1007/978-1-4939-3759-2_17 Wang Y, Chiu J, He Q (2005) Proteomics in computer-aided drug design. Curr Comput Aided Drug Des 1:43–52. https://doi.org/10.2174/1573409052952260 Wang X (2014) Translational bioinformatics in genomics and proteomics for clinical discovery and development. Springer Washburn MP (2004) Technique review Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genom 3:280–286. https://doi.org/10.1093/bfgp/3.3.280 Westermeier R (2014) Looking at proteins from two dimensions: A review on five decades of 2D electrophoresis. Arch Physiol Biochem 120(5):168–172.https://doi.org/10.3109/13813455.2014.945188 Wilchek M, Chaiken I (2000) An overview of affinity chromatography. Methods Mol Bio 47:1–6. https://doi.org/10.1007/978-1-60327-261-2_1 Winefield RD, Williams TD, Himes RH (2009) A label-free mass spectrometry method for the quantification of protein isotypes. Anal BioChem 395(2):217–223. https://doi.org/10.1016/j.ab.2009.07.052 Yates J (1998) Mass Spectrometry and the Age of the Proteome. J Mass Spectrom 33(1):1–19. https://doi.org/10.1002/(SICI)1096-9888(199801)33:1%3c1::AID-JMS624%3e3.0.CO;2-9 Yuk F, Chi P (2001) Trends in proteomics. Trends. Biotech 19(12):480–482. https://doi.org/10.1016/s0167-7799(01)01809-1 Zhang N, Liu X, Gao S, Wong C (2020) Parallel channels-multidimensional protein identification technology. J Am Soc Mass Spectrom 31(7):1440–1447. https://doi.org/10.1021/jasms.0c00055