Một bài đánh giá về nguyên liệu thô thay thế cho sản xuất bền vững: sợi thực vật mới

Yasemin Seki1, Figen Selli1, Ümit Halis Erdoğan1, Metehan Atagür2, M. Özgür Seydibeyoğlu2,3
1Department of Textile Engineering, Dokuz Eylul University, Buca, Izmir, Turkey
2Department of Materials Science and Engineering, Izmir Katip Celebi University, Izmir, Turkey
3Advanced Structures and Composites Center, University of Maine, Orono, USA

Tóm tắt

Với nhận thức môi trường ngày càng tăng, các nguyên liệu thô tái tạo cho ngành dệt may và composite đã trở thành một lựa chọn quan trọng để giảm thiểu việc sử dụng sợi tổng hợp không phân hủy dựa trên dầu mỏ trong nhiều ứng dụng như hàng hải, ô tô, thể thao và hàng không vũ trụ. Do đó, việc hiểu biết về hóa học, cấu trúc và tính chất của các sợi thực vật mới là vô cùng quan trọng. Các sợi tự nhiên đã được sử dụng cho nhiều mục đích từ thời kỳ cổ đại. Nhiều bài nghiên cứu và tổng quan đã được công bố về việc thu hoạch, sản xuất, tính chất và ứng dụng tiềm năng của các sợi tự nhiên truyền thống. Các vấn đề về bền vững, tái tạo và tái chế đã làm tăng việc sử dụng các sợi tự nhiên mới trên toàn cầu. Các ứng dụng mới như composite phân hủy sinh học gia cường bằng sợi tự nhiên cũng đã làm tăng tầm quan trọng của việc nghiên cứu các sợi tự nhiên mới. Bài viết tổng quan này xem xét các phương pháp chiết xuất, cấu trúc sợi, tính chất hóa học, vật lý và cơ học của các sợi cellulose mới. Các thành phần hóa học của sợi, nhóm chức và tính ưa nước bề mặt đã được thảo luận dưới góc độ tính chất hóa học. Các tính chất vật lý của các sợi cellulose như mật độ, độ tinh thể, nhiệt độ phân hủy tối đa, hiệu suất cơ học và cấu trúc bề mặt cũng được thảo luận. Ngoài ra, hiệu suất cơ học của các sợi thực vật mới đã được thực hiện thông qua việc so sánh giữa một số tính chất của sợi cellulose thông thường và các sợi cellulose gần đây được đặc trưng. Thông tin tóm tắt về đánh giá vòng đời, bền vững, tái chế và ứng dụng biocomposite của các sợi thực vật mới cũng được trình bày. Theo như những gì chúng tôi biết về các tài liệu tham khảo, bài đánh giá này có thể là duy nhất khi cung cấp thông tin chi tiết về các sợi cellulose gần đây được định hình. Cuộc khảo sát này sẽ hữu ích cho các nhà nghiên cứu quan tâm đến các sợi ligno-cellulose mới và các composite gia cường bằng sợi.

Từ khóa

#sợi thực vật mới #nguyên liệu thô tái tạo #sản xuất bền vững #composite phân hủy sinh học #bền vững và tái chế

Tài liệu tham khảo

Aaliya B, Sunooj KV, Lackner M (2021) Biopolymer composites: a review. Int J Biobased Plast 3(1):40–84. https://doi.org/10.1080/24759651.2021.1881214

Afiruzzaman Khan GM, Shamsul Alam Md (2013) Surface chemical treatments of jute fiber for high value composite uses. Res Rev J Mater Sci 1(2):39–44

Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. https://doi.org/10.1007/s10570-016-0881-6

Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresource Technol 99(6):144–1671. https://doi.org/10.1016/j.biortech.2007.04.029

Al-Oqla FM (2017) Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 24(6):2523–2530. https://doi.org/10.1007/s10570-017-1280-3

Al-Oqla FM (2020) Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. J Polym Environ 29(3):892–899. https://doi.org/10.1007/s10924-020-01889-3

Al-Oqla FM (2020) Evaluation and comparison of date palm fibers with other common natural fibers. In: Midani M, Saba N, Alothman OY (eds) Date palm fiber composites. Springer, Singapore, pp 267–286

Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. https://doi.org/10.1016/j.jclepro.2013.10.050

Al-Oqla FM, Salit MS, Ishak MR, Aziz NA (2014) Combined multi-cirteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a Case study. BioResources 9(3):4608–4621

Al-Oqla FM, Sapuan SM, Anwer T et al (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synthet Met 206:42–54. https://doi.org/10.1016/j.synthmet.2015a.04.014

Al-Oqla FM, Salit MS, Ishak MR et al (2015b) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10(1):299–312

Al-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Decision making model for optimal reinforcement condition of natural fiber composites. Fiber Polym 16(1):153–163. https://doi.org/10.1007/s12221-015-0153-3

Al-Oqla FM, Sapuan SM, Ishak MR, Nurani AA (2016) A decision-making model for selecting the most appropriate natural fiber – polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556

Altinisik A, Seki Y, Ertas S et al (2015) Evaluating of agave americana fibers for biosorption of dye from aqueous solution. Fiber Polym 16(2):370–377. https://doi.org/10.1007/s12221-015-0370-9

Ameer MH, Shaker K, Ashraf M et al (2017) Interdependence of moisture, mechanical porperties and hydrophobic treatment of jute fibre-reinforced composite materials. J Text I 108(10):1768–1776. https://doi.org/10.1080/00405000.2017.1285201

Anderberg S (2020) The contribution of organic agriculture to poverty reduction, Chap 3. In: Breiling M, Anbumozhi V (eds) Vulnerability of agricultural production networks and global food value chains due to natural disasters. Economic Research Institute for ASEAN and East Asia, Jakarta, Indonesia, pp 42–72

Anwar B, Rosyid NH, Effendi DB et al (2016) Isolation of bacterial cellulose nanocrystalline from pineapple peel waste. Optimization of acid concentration in the hydrolysis method. API Conference Proceedings. 1708, 04001. https://aip.scitation.org/doi/pdf/https://doi.org/10.1063/1.4941151.

Areias AC, Ribeiro C, Sencadas V et al (2012) Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(L-lactide) electrospun mats. Soft Matter 8:5818–5825. https://doi.org/10.1039/C2SM25557J

Arpitha GR, Yogesha B (2017) An overview on mechanical property evaluation of natural fiber reinforced polymers. Mater Today-Proc 4(2):2755–2760. https://doi.org/10.1016/j.matpr.2017.02.153

Arsyad M, Soenoko R (2018) The effects of sodium hydroxide and potassium permangante treatment on roughness of coconut fiber surface. MATEC Web of Conf 204:05004

Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Characterization of new natural cellulosic fiber from Acacia leucophloea bark. Int J Polym Anal Charact 20:367–376. https://doi.org/10.1080/1023666X.2015.1018737

Arthanarieswaran VP, Kumaravel A, Kathirselvam M et al (2016) Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: influence of fiber loading and alkali treatment. Int J Polym Anal Charact 21(7):571–583. https://doi.org/10.1080/1023666X.2016.1183279

Arul Jeya Kumar A, Prakash M (2019) Thermal properties of basalt/Cissus quadrangularis hybrid fiber reinforced polylactic acid biomedical composites. J Therm Anal Calorim 141(2):717–725. https://doi.org/10.1007/s10973-019-09058-y

Asaadi S, Hummel M, Hellsten S et al (2016) Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid. Chem Sus Chem 9:3250–3258. https://doi.org/10.1002/cssc.201600680

ASTM (2018) Standard test methods for density determination of flax fiber. Annual Book of ASTM Standards. 07(02). https://doi.org/10.1520/D8171-18

Atagur M, Seki Y, Orkun O et al (2020a) Evaluating of reinforcing effect of Ceratonia Siliqua for polypropylene: tensile, flexural and other properties. Polym Test 89:1–11. https://doi.org/10.1016/j.polymertesting.2020.106607

Atagur M, Seki Y, Pasaoglu Y et al (2020b) Mechanical and thermal properties of Carpinas betulus fiber filled polypropylene composites. Polym Compos 41:1925–1935. https://doi.org/10.1002/pc.25508

Atagur M, Kaya N, Uysalman T et al (2020) A detailed characterization of sandalwood-filled high-density polyethylene composites. J Thermoplast Compos. https://doi.org/10.1177/0892705720939157

Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208. https://doi.org/10.1016/j.carbpol.2017.06.065

Balaji AN, Karthikeyan MKV, Vignesh V (2016) Characterization of new natural cellulosic fiber from kusha grass. Int J Polym Anal Charact 21(7):599–605. https://doi.org/10.1080/1023666X.2016.1192324

Balaji D, Ramesh M, Kannan T et al (2021) Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Mater Today-Proc 42:350–355. https://doi.org/10.1016/j.matpr.2020.09.548

Balani K, Verma V, Agarwal A et al (2015) Physical, thermal and mechanical properties of polymers, in Biosurfaces: a materials science and engineering perspective, First Edition: pp 329–344. https://doi.org/10.1002/9781118950623.app1

Balasundar P, Narayanasamy P, Senthamaraikannan P et al (2018) Extraction and characterization of new natural cellulosic Chloris Barbata fiber. J Nat Fibers 15(3):436–444. https://doi.org/10.1080/15440478.2017.1349015

Baskaran PG, Kathiresan M, Senthamaraikannan P et al (2018) Characterization of new natural cellulosic fiber from the bark of Dichrostachys Cinerea. J Nat Fibers 15(1):62–68. https://doi.org/10.1080/15440478.2017.1304314

Batista KC, Silva DAK, Coelho LAF et al (2010) Soil biodegradation of PHBV/Peach palm particles biocomposites. J Polym Environ 18(3):346–354. https://doi.org/10.1007/s10924-010-0238-4

Baytar AA, Peynircioğlu C, Sezener V, Basal H, Frary A, Frary A, Doğanlar S (2018) Identification of stable QTLs for fiber quality and plant structure in Upland cotton (G. hirsutum L.) under drought stress. Ind Crop Prod 124:776–786

Beakou A, Ntenga R, Lepetit J et al (2008) Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos Part A 39(1):67–74. https://doi.org/10.1016/j.compositesa.2007.09.002

Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

Belouadah Z, Rokbi M, Ati A (2020) Manufacturing and characterization of new composite based on epoxy resin and Lygeum Spartum L. plant. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1856273

Benhamou A, Boussetta A, Grimi N et al (2021) Characteristics of cellulose fibers from Opuntia ficus indica cladodes and its use as reinforcement for PET based composites. J Nat Fiber. https://doi.org/10.1080/15440478.2021.1904484

Bera T, Mohanta N, Prakash V et al (2019) Moisture absorption and thickness swelling behavior of luffa fiber/epoxy composite. J Reinf Plast Compos. 38(19–20):923–937

Bhuvaneshwaran M, Sampath PS, Balu S, Sagadevan S (2019) Physicochemical and mechanical properties of natural cellulosic fiber from Coccinia Indica and its epoxy composites. Polimery 64(10):656–664

Biagiotti J, Puglia D, Kenny JM (2004) A review on natural fibre-based composites– part I: structure, processing and properties of vegetable fibres. J Nat Fiber 1(2):37–68

Binoj RS, Edwin Raj R, Sreenivasan VS et al (2016) Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca catechu L.) as potential alternate for hazardous synthetic fibers. J Bionic Eng 13:156–165. https://doi.org/10.1016/S1672-6529(14)60170-0

Binoj JS, Edwin Raj R, Daniel BSS (2017) Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. J Clean Prod 142:1321–1331. https://doi.org/10.1016/j.jclepro.2016.09.179

Biotrinsic cotton (2021) https://www.indigoag.com/hubfs/biotrinsic%20collateral%202021/BIO-Cotton-WT29_ProductSaleSheet_02_25_21.pdf. Accessed 20 Nov 2021

Bismarck A, Aranberri-Askargorta I, Springer J (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23(5):872–894. https://doi.org/10.1002/pc.10485

Bleuze L, Lashermes G, Alavoine G et al (2018) Tracking the dynamics of hemp dew retting under controlled environmental conditions. Ind Crop Prod 123:55–63

Boland C, Dekleine R, Moorthy A et al (2014) A life cycle assessment of natural fiber reinforced composites in automotive applications, SAE Technical Papers, SAE International. https://doi.org/10.4271/2014-01-1959

Boonterm M, Sunyadeth S, Dedpakdee S et al (2016) Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. J Clean Prod 134:592–599. https://doi.org/10.1016/j.jclepro.2015.09.084

Borchani KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22(3):1577–1589. https://doi.org/10.1007/s10570-015-0583-5

Botta L, Fiore V, Scalici T (2015) New polylactic acid composites reinforced with artichoke fibers. Materials 8(11):7770–7779

Bouafif H, Koubaa A, Perre P (2008) Analysis of among species variability in wood fiber surface using DRIFTS and XPS: effects on esterification efficiency. J Wood Chem Technol 28(4):296–315. https://doi.org/10.1080/02773810802485139

Bousfield G, Morin S, Jacquet N, Richel A (2018) Extraction and refinement of agricultural plant fibers for composites manufacturing. CR Chim 21(9):897–906

Brigida AIS, Calado VMA, Gonçalves LRB et al (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79(4):832–838. https://doi.org/10.1016/j.carbpol.2009.10.005

Broeren MLM, Dellaert SNC, Cok B et al (2017) Life cycle assessment of sisal fibre – exploring how local practices can influence environmental performance. J Clean Prod 149:818–827. https://doi.org/10.1016/j.jclepro.2017.02.073

Brueck B, Guglhoer T, Haug S et al (2017) Surface characterization of carbon fibers by atomic force microscopy: roughness quantification by power spectral density. Key Eng Mater 742:447–456. https://doi.org/10.4028/www.scientific.net/KEM.742.447

Brusseau ML (2019) Sustainable development and other solutions to pollution and global change. In: Brusseau ML, Pepper IL, Gerba CP (eds) Environmental and pollution science. Elsevier, Amsterdam, pp 585–603

Bulut Y, Akşit A (2013) A comparative study on chemical treatment of jute fiber: potassium dichromate, potassium permanganate and sodium perborate trihydrate. Cellulose 20:3155–3164. https://doi.org/10.1007/s10570-013-0049-6

Cai M, Takagi H, Nakagaito AN et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A- Appl S 90:589–597. https://doi.org/10.1007/s10570-013-0049-6

Caro D (2019) Carbon footprint. In: Fath BD (ed) Encyclopedia of ecology. Elsevier, Amsterdam, pp 252–257

Chaitanya S, Singh I (2018) Ecofriendly treatment of aloe vera fibers for PLA based green composites. Int J Precis Eng Man- Green Technol 5(1):143–150. https://doi.org/10.1007/s40684-018-0015-8

Chandra S (2019) Fourier transform infrared (Ft-Ir) spectroscopic analysis of Nicotiana plumbaginifolia (Solanaceae). J Med Plants Stud 7(1):82–85

Chee SS, Jawaid M, Sultan MTH et al (2019) Thermomechamical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Compos Part B- Eng 163:165–174. https://doi.org/10.1016/j.compositesb.2018.11.039

Chen Y, Su N, Zhang K et al (2018) Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fiber bundles. Ind Crop Prod 123:341–352. https://doi.org/10.1016/j.indcrop.2018.06.079

Chua YW, Yu Y, Wu H (2017) Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures. Fuel 200:70–75. https://doi.org/10.1016/j.compositesb.2018.11.039

Chung TJ, Park JW, Lee HJ et al (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8(3):376. https://doi.org/10.3390/app8030376

Cimpean A, Miculescu F (2020) Biomaterials and implant biocompatibility, in materials, MDPI

Ciolacu D, Popa VI (2009) Cellulose allomorphs – overview and perspectives. İn: Lejeune A, deprez T (eds) Cellulose: structure and properties. Nova Biomedical, pp 1–38 (ISBN: 978-1-60876-388-7)

Codispoti R, Oliveira DV, Olivito RS et al (2015) Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Compos Part B- Eng 77:74–83. https://doi.org/10.1016/j.compositesb.2015.03.021

Connell KYH, Kozar JM (2014) Environmentally sustainable clothing consumption: knowledge, attitudes, and behavior. In: Muthu SS (ed) Roadmap to sustainable textiles and clothing. Springer, Singapore

Corbiere-Nicollier T, Leban BG, Ludquist L et al (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conserv Recy 33:267–287. https://doi.org/10.1016/S0921-3449(01)00089-1

d’Almeida JRM, Aquino RCMP, Monteiro SN (2006) Tensile mechanical properties, morphological aspects and chemical characterization of Piassava (Attalea funifera) fibers. Compos Part A-Appl Sci Manuf 37:1473–1479. https://doi.org/10.1016/j.compositesa.2005.03.035

Da Silva AMB, da Luz SM, Siva I et al (2019) An overview on plant fiber technology: an interdisciplinary approach. In: Inamuddin ST, Mishra RK, Asiri AM (eds) Sustainable polymer composites and nanocomposites. Springer, Cham

Dalmis R, Koktas S, Seki Y et al (2020a) Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose 27:127–139

Dalmis R, Kilic Balci G, Seki Y et al (2020b) Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose 27:8621–8634. https://doi.org/10.1007/s10570-020-03385-2

Dang B, Chen Y, Yang N et al (2018) Effect of aluminosilicate on flame-retardant and mechanical properties of lignocellulose composite. Cellulose 25:4167–4177. https://doi.org/10.1007/s10570-018-1827-y

Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102(5):5050–5056. https://doi.org/10.1002/app.25105

Das D, Mondal S, Maiti D (2009) Structural characterization of dietary fiber of green chalcumra (Benincasa Hispida) fruit by NMR spectroscopic analysis. Nat Prod Commun 4(4):547–552

De Silva R, Byrne N (2017) Utilization of cotton waste for regenerated cellulose fibres: influence of degree of polymerization on mechanical properties. Carbohydr Polym 174:89–94. https://doi.org/10.1016/j.carbpol.2017.06.042

Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030

Deng Y, Paraskevas D, Tian Y et al (2016) Life cycle assessment of flax-fibre reinforced epoxidized linseed oil composite with a flame retardant for electronic applications. J Clean Prod 133:427–438. https://doi.org/10.1016/j.jclepro.2016.05.172

Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos Part B-Eng 166:436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

Dissanayake NP (2011) Life cycle assesment of flax fibres for the reinforcement of polymer matrix composites. (Doctorate), University of Plymouth, UK.

Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21:1065–1073. https://doi.org/10.1007/s10570-013-9995-2

Driemeier C, Pimenta MTB, Rocha GJM et al (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519

Duigoua AL, Pillin I, Bourmauda A et al (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites. Compos Part A-Appl Sci Manuf 39:1471–1478. https://doi.org/10.1016/j.compositesa.2008.05.008

Dungani R, Karina M, Subyakto S et al (2016) Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian J Plant Sci 15(1–2):42–55

Egala R, Setti SG (2018) Impact characterization of epoxy LY556/Ricinus communis L. plant natural fiber composite materials. Mater Today-Proc 5:26799–26803. https://doi.org/10.1016/j.matpr.2018.08.159

Ejaz M, Azad MM, Shah AUR et al (2020) Mechanical and biodegradable properties of jute/flax reinforced PLA composites. Fiber Polym 21(11):2635–2641. https://doi.org/10.1007/s12221-020-1370-y

El Hage R, Brosse N, Chrusciel L et al (2009) Characterization of milled wood lignin and ethanol organosolv lignin from mischantus. Polym Degrad Stab 94(10):1632–1638. https://doi.org/10.1016/j.polymdegradstab.2009.07.007

Elseify LA, Midani M (2020) Characterization of date palm fiber. In: Midani M, Saba N, Alothman OY (eds) Date palm fiber composites:processing, properties and applications. Springer, Singapore

Elseify LA, Midani M, Shihata LA et al (2019) Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose 26:2209–2232. https://doi.org/10.1007/s10570-019-02259-6

Elseify LA, Midani M, Hassanin AH et al (2020) Long textile fibres from the midrib of date palm: physiochemical, morphological, and mechanical properties. Ind Crop Prod 151:112466. https://doi.org/10.1016/j.indcrop.2020.112466

El-Shafei AM, Adel AM, Ibrahim AA (2019) Dual functional jute fabric biocomposite with chitosan and phosphorylated nano-cellulose (anti-microbial and thermal stability). Int J Biol Macromol 124:733–741. https://doi.org/10.1016/j.ijbiomac.2018.11.137

Erdogan ÜH, Seki Y, Aydogdu G et al (2016) Effect of different surface treatments on the properties of jute. J Nat Fiber 13(2):158–171. https://doi.org/10.1080/15440478.2014.1002149

Erdoğan ÜH, Duran H, Selli F (2019) Recycling of cellulose from vegetable fiber waste for sustainable industrial applications. Ind Text 70(1):37–41

Erdoğan ÜH, Selli F, Duran H (2017) Banana plant waste as raw material for cellulose extraction. Paper presented at the The 21st International Conference Strutuex 2016, Czech Republic.

Exchange T (2014) The life cycle assesment of organic cotton fiber-a global average- summary of findings. Retrieved from.

Exchange T (2018) Preferred fiber & materials market Report 2018. Retrieved from.

Eyupoglu S (2020) Characterization of new cellulosic fibers obtained from zingiber officinale. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1764452

Fan X, Yu T, Zhang LZ et al (2007) Photocatalytic degradation of acetaldehyde on mesoporous TiO2: effects of surface area and crystallinity on the photocatalytic activity. Chin J Chem Phys 20(6):733–738

Fang TW, Asyikin N, Syasya NS et al (2017) Water absorption and thickness swelling of oil palm empty fruit bunch (OPEFB) and seaweed composite for soil erosion mitigation. J Phys Sci 28(2):1–17

Fathi B, Foruzanmaher M, Elkoun S et al (2019) Novel approach for silane treatment of flax fiber to improve the interfacial adhesion in flax/bio epoxy composites. J Compos Mater 53(16):2229–2238

Fazeli M, Florez JP, Simao RA (2019) Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos Part B-Eng 163:207–216

Ferrandez-García MT, Ferrandez-Garcia CE, Garcia-Ortuño T et al (2020) Study of waste jute fibre panels (Corchorus capsularis L.) agglomerated with portland cement and starch. Polymers 12:599. https://doi.org/10.3390/polym12030599

Ferreira DP, Cruz J, Fangueiro R (2019) Chapter 1-Surface modification of natural fibers in polymer composites. In: Mittal LK (ed) Green composites for automotive applications. Wiley, Hoboken, pp 3–41

Figueiredo LP, Ferreira FF (2014) The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103(5):1394–1399. https://doi.org/10.1002/jps.23909

Foston MB, Hubbell CA, Ragauskas AJ (2011) Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Mater 4:1985–2002. https://doi.org/10.3390/ma4111985

French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

French AD, Cintron MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

French et al (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448. https://doi.org/10.1007/s10570-020-03172-z

Ganapathy T, Sathiskumar R, Senthamaraikannan P et al (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int J Biol Macromol 138:573–581

Gedik G (2021) Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses. Cellulose 28:6899–6915. https://doi.org/10.1007/s10570-021-03952-1

George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crop Prod 53:365–373. https://doi.org/10.1016/j.indcrop.2013.12.037

Georgiopoulos P, Kontou E, Georgousis G (2018) Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos Commun 10:6–10. https://doi.org/10.1016/j.coco.2018.05.002

Girn T, Livingstone C, Calliafas P (2019) WRAP-Fibre to fibre recycling: an economic & financial sustainability assessment. Retrieved from.

Gopinath R, Ganesan K, Saravanakumar SS et al (2016) Characterization of new cellulosic fiber from the stem of Sidarhombifolia. Int J Polym Anal Charact 21(2):123–129. https://doi.org/10.1080/1023666X.2016.1117712

Gouanve F, Marais S, Bessadok A et al (2006) Study of water sorption in modified flax fibers. J Appl Polym Sci 101(6):4281–4289. https://doi.org/10.1002/app.23661

Guen MJL, Newman RH, Fernyhough A et al (2016) Correlations between the physiochemical characteristics of plant fibres and their mechanical properties. In: Fangueiro R, Rana S (eds) natural fibres: advances in science and technology towards industrial applications. Springer, Cham

Guo JB, Tao ZY, Luo XG (2005) Analysis of bamboo lignin with FTIR and XPS. BioResources 63(16):1536–1540

Guruharthik Babu B, Princewinston D, Saravanakumar SS et al (2020) Investigation on the physicochemical and mechanical properties of novel alkali - treated Phaseolus vulgaris fibers. J Nat Fiber 19(2):770–781

Haensel T, Reinmöller M, Lorenz P (2012) Valence band structure of cellulose and lignin studied by XPS and DFT. Cellulose 19:1005–1011

Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell T, Zeronian S (eds) Cellulose chemistry and its applications. Ellis Horwood Ltd, Chichester, UK, pp 30–83

Hajiha H, Sain M, Mei LH (2014) Modification and characterization of hemp and sisal fibers. J Nat Fiber 11(2):144–168. https://doi.org/10.1080/15440478.2013.861779

Halib N, Amin MCIM, Ahmad I (2012) Physicochemical properties and characterization of Nata de Coco from local food industries as a source of cellulose. Sains Malays 41(2):205–211

Han SO, Cho D, Park WH et al (2006) Henequen /poly (butylene succinate) biocomposites: electron beam irridation effects on henequen fiber and the interfacial properties of biocomposites. Compos Interfaces 13(2–3):231–247. https://doi.org/10.1163/156855406775997123

Hashim MY, Amin AM, Marwah OMF (2017) The effect of alkali treatment under various conditions on physical porperties of kenaf fiber. J Phys-Conf Ser 914(1):012030

Hassan ML, Bras J, Hassan EA et al (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108. https://doi.org/10.1016/j.indcrop.2014.01.055

Haule LV, Carr CM, Rigout M (2016) Preparation and physical properties of regenerated cellulose fibers from cotton waste garments. J Clean Prod 112(5):4445–4451. https://doi.org/10.1016/j.jclepro.2015.08.086

He L, Li W, Chen D et al (2018) Investigation on the microscopic mechanism of potassium permanganate modification and the porperties of ramie fiber/polypropylene composites. Polym Compos 39(9):3353–3362. https://doi.org/10.1002/pc.24355

Hearle JWS (2001) Textile fibers: a comparative overview. In: Encyclopedia of materials: science and technology. https://doi.org/10.1016/B0-08-043152-6%2F01643-0

Himanshua SK, Alea S, Bordovskyb J, Darapuneni M (2019) Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains. Agr Water Manage 225:105782. https://doi.org/10.1016/j.agwat.2019.105782

Höcker H (2002) Plasma treatment of textile fibers. Pure Appl Chem 74(3):423–427

Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. J Mater Sci 32:443–449

Huang J, Yu C (2019) Determination of cellulose, hemicellulose and lignin content using near infrared spectroscopy. Text Res J 89(23–24):4875–4883

Huda MS, Drzal LT, Mohanty AK et al (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated composites. Compos Interfaces 15(2–3):169–191. https://doi.org/10.1163/156855408783810920

Husain SNH, Rashid AHA, Shaari MF et al (2019) Mechanical properties evaluation of nonwoven industrial cotton waste produced by needle punching method. IOP Conf Ser- Mater Sci Eng 670:012035

Ilangovan M, Guna V, Hu C et al (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crop Prod 112:556–560. https://doi.org/10.1016/j.indcrop.2017.12.042

Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051. https://doi.org/10.1016/j.indcrop.2017.12.042

Ilyas RA, Sapuan SM, Kadier A (2020) Properties and characterization of PLA, PHA, and other types of biopolymer composites, advanced processing, properties, and applications of starch and other bio-based polymers, 1st edn. Elsevier, pp 111–138. https://doi.org/10.1016/b978-0-12-819661-8.00008-1

Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr Polym 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

Indran S, Edwin Raj R, Sreenivasan VS (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr Polym 110:423–429. https://doi.org/10.1016/j.carbpol.2014.04.051

Indran S, Edwin Raj RD, Daniel BSS et al (2018) Comprehensive characterization of natural Cissus Quadrangularis stem fiber composites as an alternate for conventional FRP composites. J Bionic Eng 15(5):914–923

Jabli M, Tka N, Ramzi K et al (2018) Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Nerium oleander. J Mol Liq 249:1138–1144. https://doi.org/10.1016/j.molliq.2017.11.126

Jiang N, Yu T, Li Y et al (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23. https://doi.org/10.1016/j.compscitech.2019.01.018

Johansson LS, Campbell JM, Koljonen K et al (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 44–145:92–95. https://doi.org/10.1016/S0169-4332(98)00920-9

Jonoobi M, Harun J, Shakeri A et al (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus Cannabinus) pulp and nanofibers. BioResources 4(2):629–639

Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

Joshi SV, Drzal LT, Mohanty AK et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A- Appl Sci Manuf 35(3):371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

Kabir MM, Wang H, Lau KT et al (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Compos Part B- Eng 43(2):159–169. https://doi.org/10.1016/j.compositesb.2011.06.003

Kabir MM, Wang H, Lau KT et al (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23. https://doi.org/10.1016/j.compositesb.2011.06.003

Kaewtatip K, Thongmee J (2013) Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704. https://doi.org/10.1016/j.matdes.2013.02.010

Kale RD, Alemayehu TG, Gorade VG (2020) Extraction and characterization of lignocellulosic fibers from Girardinia Bullosa (Steudel) Wedd. (Ethiopian Kusha Plant). J Nat Fiber 17(6):906–920. https://doi.org/10.1080/15440478.2018.1539940

Kalimuthu M, Nagarajan R, Batcha AA et al (2019) Mechanical property and morphological analysis of polyester composites reinforced with Cyperus pangorei fibers. J Bionic Eng 16(1):164–174

Kanaya T, Kaji K (2016) History of fiber structure in high-performance and specialty fibers. In: Concepts, technology and modern applications of man-made fibers for the future, 1st edn, Springer

Karche T, Singh MR (2019) The application of hemp (Cannabis sativa L.) for a green economy: a review. Turk J Bot 43:710–723

Kathirselvam M, Kumaravel A (2019) Characterization of cellulose fibers in Thespesia Populnea barks: Influence of alkali treatment. Carbohydr Polym 217:178–189. https://doi.org/10.1016/j.carbpol.2019.04.063

Kathirselvam M, Kumaravel A, Arthanarieswaran VP et al (2019) Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int J Biol Macromol 129:396–406. https://doi.org/10.1016/j.ijbiomac.2019.02.044

Katogi H, Takemura K (2013) Effect of crystallinity on mechanical properties of carbon fiber reinforced polypropylene. Key Eng Mater 577–578:77–80

Keskin OY, Dalmis R, Kilic Balci G et al (2020) Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 27:9963–9974

Khan A, Vijay R, Singaravelu DL et al (2020) Extraction and characterization of natural fibers from Citrullus lanatus Climber. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1758281

Khan A, Vijay R, Singaravelu DL et al (2021) Characterization of natural fibers from Cortaderia Selloana grass (Pampas) as reinforcement material for the production of the composites. J Nat Fiber 18(11):1893–1901. https://doi.org/10.1080/15440478.2019.1709110

Kharrat F, Khlif M, Hilliou L et al (2020) Minimally processed date palm (Phoenix dactylifera L.) leaves as natural fillers and processing aids in poly(lactic acid) composites designed for the extrusion film blowing of thin packages. Ind Crop Prod. 154:112637. https://doi.org/10.1016/j.indcrop.2020.112637

Kılınç AÇ, Köktaş S, Atagür M et al (2017a) Effect of extraction methods on the properties of Althea Officinalis L. Fibers J Nat Fiber 15(3):325–336. https://doi.org/10.1080/15440478.2017.1325813

Kılınç AÇ, Durmuşkahya C, Seydibeyoglu ÖM (2017) Natural fibers. In: Seydibeyoglu MÖ, Mohanty A, Misra M (eds) Fiber technology for fiber-reinforced composites. Woodhead Publishing, New delhi

Kılınç AC, Koktas S, Seki Y et al (2018) Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos Part B-Eng 140:1–8. https://doi.org/10.1016/j.compositesb.2017.11.059

Kim SJ, Moon JB, Kim GH et al (2008) Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym Test 27(7):801–806. https://doi.org/10.1016/j.polymertesting.2008.06.002

Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127–2141

Kocaman S, Karaman M, Gursoy M et al (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr Polym 159:48–57. https://doi.org/10.1016/j.carbpol.2016.12.016

Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23(2):362. https://doi.org/10.3390/molecules23020362

Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos Part B- Eng 180:107535. https://doi.org/10.1016/j.compositesb.2019.107535

Kommula VP, Obi Reddy K, Shukla M et al (2013) Physico-chemical, tensile, thermal characterization of napier grass (native African) fiber strands. Int J Polym Anal Charact 18(4):303–314. https://doi.org/10.1080/1023666X.2013.784935

Kozlowski RM, Mackiewicz-Talarczyk M (2020) Handbook of natural fibres types, properties, and factors affecting breeding and cultivation.

Kumar A (2016) Environmental pollution by textile industries; Case studies and analysis. In: Arya A, Basu SK (eds) Anthropogenic pollution: causes and concerns, 1st edn. The Readers Paradise

Kushwaha PK, Kumar R (2011) Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Compos 30(1):73–85

Kutlu B, Aksit A, Mutlu M (2010) Surface modification of textiles by glow discharge technique: part II: low frequency plasma treatment of wool fabrics with acrylic acid. J Appl Polym Sci 116(3):1545–1551

Lagazzo A, Moliner C, Bosio B et al (2019) Evaluation of the mechanical and thermal properties decay of PHBV/sisal and PLA/sisal biocomposites at different recycle steps. Polymers 11(9):1477. https://doi.org/10.3390/polym11091477

Le Duigou A, Kervoelen A, Le Grand A et al (2014) Interfacial properties of flax fibre-epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157. https://doi.org/10.1016/j.compscitech.2014.06.009

Le Moigne N, Otazaghine N, Corn S (2018) Surfaces and interfaces in natural fiber reinforced composites: fundamentals, modifications and characterization. Springer, Cham

Leal Filho W, Ellams D, Han S (2019) A review of the socio-economic advantages of textile recycling. J Clean Prod 218:10–20. https://doi.org/10.1016/j.jclepro.2019.01.210

Lee SG, Choi SS, Park WH et al (2003) Characterization of surface modified flax fibers and their biocomposites with PHB. Macromol Symp 197(1):089–100. https://doi.org/10.1002/masy.200350709

Lee CH, Khalina A, Lee SH, Liu M (2020) A comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Adv Mater Sci Eng. https://doi.org/10.1155/2020/6074063

Lewin M (2006) Cotton fibers in handbook of fiber chemistry. CRC Press, Boca Raton

Li M, Pu Y, Thomas VM (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B- Eng 200:108254. https://doi.org/10.1016/j.compositesb.2020.108254

Liatsou I, Pashalidis I, Oezaslan M et al (2017) Surface characterization of oxidized biochar fibers derived from Luffa Cylindrica and lanthanide binding. J Environ Chem Eng 5(4):4069–4074

Ling Z, Wang T, Makarem M (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328

Liu X, Zicari SM, Liu G et al (2015) Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability. Bioresour Technol 185:150–157. https://doi.org/10.1016/j.biortech.2015.02.047

Liu M, Silva DAS, Fernando D et al (2016) Controlled retting of hemp fibres: effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites. Compos Part A- Appl s 88:253–262. https://doi.org/10.1016/j.compositesa.2016.06.003

Liu Y, Xie J, Wu N et al (2019a) Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26:4707–4719

Liu L, Jin S, Mei P et al (2019b) Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta 203:58–64. https://doi.org/10.1016/j.talanta.2019.05.050

Liu Y, Xie J, Wu N et al (2019c) Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Int 131:398–405. https://doi.org/10.1016/j.triboint.2018.11.004

Liu W, Liu S, Liu T et al (2019d) Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohydr Polym 206:141–148. https://doi.org/10.1016/j.carbpol.2018.10.046

Lopes JO, Garcia RA, de Souza ND (2018) Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Maderas Cienc Tecnol 20(4):737–746

Lu J, Hamouda H (2014) Current status of fiber waste recycling and its future. Adv Mater Res 878:122–131. https://doi.org/10.4028/www.scientific.net/AMR.878.122

Luz FS, Costa Garcia Filho F, Oliveira MS et al (2020) Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers 12(9):1920

Maache M, Bezazi A, Amroune S et al (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096

Madhu P, Sanjay MR, Senthamaraikannan P et al (2019) A review on synthesis and characterization of commercially available natural fibers: part II. J Nat Fiber 16(1):25–36. https://doi.org/10.1080/15440478.2017.1379045

Madhu P, Sanjay MR, Senthamaraikannan P et al (2020a) Effect of various chemical treatments of Prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological properties. J Nat Fiber 17(6):833–844. https://doi.org/10.1080/15440478.2018.1534191

Madhu P, Sanjay MR, Jawaid M et al (2020b) A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polym Test 85(106437):1–7. https://doi.org/10.1016/j.polymertesting.2020.106437

Maheshwaran MV, Rajesh Jesudoss Hyness N, Senthamaraikannan P et al (2018) Characterization of natural cellulosic fiber from Epipremnum aureum stem. J Nat Fiber 15(6):789–798. https://doi.org/10.1016/j.matdes.2012.10.044

Majeed K, Jawaid M, Hassan A et al (2013) Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater Design 46:391–410. https://doi.org/10.1016/j.matdes.2012.10.044

Maleque MA, Belal FY, Sapuan SM et al (2007) Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite. Arab J Sci Eng 32(2B):359–364

Malviya RK, Singh RK, Purohit R et al (2020) Natural fibre reinforced composite materials: environmentally better life cycle assessment – a case study. Mater Today- Proc. https://doi.org/10.1016/j.matpr.2020.02.651

Manimaran P, Prithiviraj M, Saravanakumar SS et al (2018a) Physicochemical, tensile, and thermal characterization of new natural cellulosic fibers from the stems of Sida cordifolia. J Nat Fiber 15(6):860–869. https://doi.org/10.1080/15440478.2017.1376301

Manimaran P, Senthamaraikannan P, Sanjay MR et al (2018b) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

Manimaran P, Senthamaraikannan P, Murugananthan K et al (2018c) Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J Nat Fiber 15(1):29–38. https://doi.org/10.1080/15440478.2017.1302388

Manimaran P, Sanjay MR, Senthamaraikannan P et al (2019) Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. J Nat Fiber 16(5):768–780. https://doi.org/10.1080/15440478.2017.1302388

Mansor MR, Salit MS, Zainudin ES et al (2015) Life cycle assessment of natural fiber polymer composites. In: Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, Cham

Mansour R, Abdelaziz A, Zohra AF (2018) Characterization of long lignocellulosic fibers extracted from Hyphaene thebaica L. Leaves Res J Text Appar 22(3):195–211

Manzato L, Rabelo LCA, Souza SM et al (2017) New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J Mol Struct 1143:229–234. https://doi.org/10.1016/j.molstruc.2017.04.088

Maqsood HS, Bashir U, Wiener J et al (2017) Ozone treatment of jute fibers. Cellulose 24(3):1543–1553

Martin AR, Martins MA, da Silva ORRF et al (2010) Studies on the thermal properties of sisal fiber and its constituents. Thermochim Acta 506:14–19. https://doi.org/10.1016/j.tca.2010.04.008

Mat Taib R, Ariawan D, Mohd Ishak ZA (2016) Surface characterization of alkali treated kenaf fibers by XPS and AFM. Key Eng Mater 694:29–33. https://doi.org/10.4028/www.scientific.net/KEM.694.29

Mayandi K, Rajini N, Pitchipoo P, Winowlin Jappes JT, Siva I (2015) Mechanical performance of Cissus quadrangularis/polyester composite. Mater Today 4:222–232. https://doi.org/10.1016/j.mtcomm.2015.08.001

Mayandi K, Rajini N, Pitchipoo P et al (2016) Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. Int J Polym Anal Charact 21(2):175–183. https://doi.org/10.1080/1023666X.2016.1132064

Melo JDD, Carvalho LFM, Medeiros AM et al (2012) A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos Part B- Eng 43(7):2827–2835. https://doi.org/10.1016/j.compositesb.2012.04.046

Migneault S, Koubaa A, Perre P et al (2015) Effects of wood fiber surface chemistry on strength of wood-plastic composites. Appl Surf Sci 343:11–18. https://doi.org/10.1016/j.apsusc.2015.03.010

Mihranyan A, Llagostera AP, Karmhag R et al (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433–442. https://doi.org/10.1016/j.ijpharm.2003.09.030

Moghaddam MK, Mortazavi SM (2016) Physical and chemical properties of natural fibers from Typha Australis leaves. J Nat Fiber 13(3):353–361. https://doi.org/10.1016/j.ijpharm.2003.09.030

Mohanty JR, Das SN, Das HC et al (2014) Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers Polym 15:1062–1070. https://doi.org/10.1007/s12221-014-1062-6

Moran JI, Alvarez VA, Cyras VP et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

Morrison WH III, Archibald DD, Sharma HSS et al (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crop Prod 12:39–46. https://doi.org/10.1016/S0926-6690(99)00044-8

Morton WE, Hearle JWS (2008) An introduction to fibre structure. In: Physical properties of textile fibres, 4th edn. Woodhead Publishing

Moshi AAM, Ravindran D, Sundara Bharathi SR et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

Muhammaed AH (2017) Effect of alkali treatment on the coconut fiber surface. ARPN J Eng Appl Sci 12(6):1870–1875

Muralikrishna IV, Manickam V (2017) Life cycle assessment environmental management. Elsevier, UK, pp 57–75

Muthu SS (2015) Comparative life cycle assessment of natural and man-made textiles. In: Muthu SS (ed) Handbook of life cycle assessment (LCA) of textiles and clothing. Elsevier, UK, pp 276–281

Muthu Chozha Rajan B, Indran S, Divya D et al (2020) Mechanical and thermal properties of Chloris barbata flower fiber /Epoxy composites: effect of alkali treatment and fiber weight fraction. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1848703

Mylsamy K, Rajendran I (2010) Investigation on physio-chemical and mechanical properties of raw and alkali-treated agave americana fiber. J Reinf Plast Compos 29(19):2925–2935. https://doi.org/10.1177/0731684410362817

Nagaraja Ganesh B, Muralikannan R (2016) Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. Int J Polym Anal Charact 21(3):259–266. https://doi.org/10.1080/1023666X.2016.1146849

Nair MM, Shetty N, Pancham Alva P et al (2018) Effect of sawdust impregnation on long coir fibers reinforced with epoxy matrix. Int J Adv Appl Sci 5(3):67–74

Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

Nam S, Netravali AN (2006) Green composites. I. Physical properties of ramie fibers for environment-friendly green composites. Fiber Polym 7(4):372–379

Narayanasamy P, Balasundar P, Senthil S et al (2020) Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 150:793–801. https://doi.org/10.1016/j.ijbiomac.2020.02.134

Nasser RA, Salem MZM, Hiziroglu S, Al-Mefarrej HA, Mohareb AS, Alam M, Aref IM (2016) Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate proximate and thermo-gravimetric techniques for energy production. Energies 9(5):374. https://doi.org/10.3390/en9050374

Naveen J, Jawaid M, Armuthakkannan P et al (2019) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, pp 427–440. https://doi.org/10.1016/B978-0-08-102292-4.00021-7

Nayak SY, Sultan MTH, Shenoy SB et al (2020) Potential of natural fibers in composites for ballistic applications – a review. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1787919

Negoro T, Thodsaratpreeyakul W, Takada Y et al (2016) Role of crystallinity on moisture absorption and mechanical performance of recycled PET compounds. Energy Proced 89:323–327. https://doi.org/10.1016/j.egypro.2016.05.042

Njoku CE, Omotoyinbo JA, Alaneme KK et al (2020) Characterization of Urena lobata fibers after alkaline treatment for use in polymer composites. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1745127

Nurul Fazita MR, Jayaraman K, Bhattacharyya D et al (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications-a review. Materials (Basel) 9(6):435. https://doi.org/10.3390/ma9060435

Obi Reddy K, Guduri BR, Varada Rajulu A (2009) Structural characterization and tensile properties of Borassus fruit fibers. J Appl Polym Sci 114(1):603–611. https://doi.org/10.1002/app.30584

Obi Reddy K, Uma Maheswari C, Shukla M et al (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67:35–38. https://doi.org/10.1016/j.matlet.2011.09.027

Obi Reddy K, Ashok B, Raja Narender Reddy K et al (2014) Extraction and characterization of novel lignocellulosic fibers from Thespesia Lampas plant. Int J Polym Anal Charact 19(1):48–61. https://doi.org/10.1080/1023666X.2014.854520

Obi Reddy K, Uma Maheswari C, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

Oliveira FR, Galvao FMF, da Silva TL et al (2016) Tinctorial behavior of curaua and banana fibers and dyeing wastewater treatment by porous alumina membranes. Desalin Water Treat 57(6):2750–2758. https://doi.org/10.1080/19443994.2015.1063088

Oliver MJ (2021) Why we need GMO crops in agriculture. Mo Med 111(6):493–507

Olson DW, Thornsbury SD, Scott S (2020) Hope for hemp: new opportunities and challenges for an old crop. United States Department of Agriculture Economic Research Service, pp 1–8. https://doi.org/10.22004/ag.econ.303831

Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016

Pai AR, Jagtap RN (2015) Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites- a review. J Mater Environ Sci 6(4):902–917

Palani Kumar K, Shadrach Jeya Sekaran A (2014) Some natural fibers used in polymer composites and their extraction processes: a review. J Reinf Plast Compos 33(20):1879–1892

Palme A (2017) Recycling of cotton textiles: characterization, pretreatment, and purification. (Doctor of Philosophy), Chalmers University of Technology, Sweden.

Panicker AM, Maria R, Rajesh KA et al (2020) Bit coir fiber and sugarcane bagasse fiber reinforced eco-friendly polypropylene composites: Development and property evaluation there of. J Thermoplast Compos Mater 33(9):1175–1195

Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10

Pasangulapati V, Ramachandriya KD, Kumar A et al (2012) Effects of cellulose, hemicellulose and lignin on the thermochemical conversion characteristics of the selected biomass. Bioresour Technol 114:663–669. https://doi.org/10.1016/j.biortech.2012.03.036

Patlolla VR, Asmatulu R (2013) Recycling and reusing fiber-reinforced composites. In: Culleri JC (ed) Recycling: technological systems. Management practices and environmental impact, pp 193–207 (ISBN: 978-1-62618-283-7)

Pejic BM, Kramar AD, Obradovic BM et al (2020) Effect of plasma treatment on chemical composition, structure, sorption properties of lignocellulosic hemp fibers. Carbohydr Polym 236:116000. https://doi.org/10.1016/j.carbpol.2020.116000

Pennas LGA, Cattani IM, Leonardi B et al (2019) Textile palm fibers from amazon biome, by products of palm trees and their applications. Mater Res Proc 11:262–274

Peterson A (2015) Towards recycling of textile fibers. (Master), Chalmers University of Technology.

Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777

Poletto M, Zattera AJ, Forte MMC et al (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

Poletto M, Junior HLO, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Mater 7:6105–6119

Popescu CM, Tibirna CM, Vasile C (2009) XPS characterization of naturally aged wood. Appl Surf Sci 256:1355–1360. https://doi.org/10.1016/j.apsusc.2009.08.087

Prasad N, Agarwal VK, Sinha S (2016) Banana fiber reinforced low-density polyethylene composites: effect of chemical treatment and compatibilizer addition. Iran Polym J 25:229–241

Premalatha N, Saravanakumar SS, Sanjay MR et al (2021) Structural and thermal properties of chemically modified Luffa Cylindrica fibers. J Nat Fiber 18(7):1038–1044. https://doi.org/10.1080/15440478.2019.1678546

Prithiviraj M, Muralikannan R, Senthamaraikannan P et al (2016) Characterization of new natural cellulosic fiber from Perotis indica plant. Int J Polym Anal Charact 21:669–674. https://doi.org/10.1080/1023666X.2016.1202466

Prithivirajan R, Balasundar P, Shyamkumar R et al (2019) Characterization of cellulosic fibers from Morus Alba L. stem. J Nat Fiber 16(4):503–511. https://doi.org/10.1080/15440478.2018.1426079

Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341(5):591–597. https://doi.org/10.1016/j.carres.2005.12.012

Radzi AM, Sapuan SM, Jawaid M et al (2019) Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. J Mater Res Technol 8(5):3988–3994. https://doi.org/10.1016/j.jmrt.2019.07.007

Rajanayagam Alex R, Karthikeyan L, Mukilan M et al (2019) A detailed study on mechanical properties of natural fibres. Int Res J Eng Technol (IRJET) 6(4):269–272

Rajesh Jesudoss Hyness N, Vignesh NJ, Senthamaraikannan P et al (2018) Characterization of new natural cellulosic fiber from Heteropogon Contortus plant. J Nat Fiber 15(1):146–153. https://doi.org/10.1080/15440478.2017.1321516

Ramachandran M (2015) Application of natural fibres in terry towel manufacturing. Int J Text Eng Process 1(1):87–91

Ramadevi P, Sampathkumar D, Srinivasa CV et al (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 73:3515–3524

Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162. https://doi.org/10.1080/15583724.2014.971124

Ramamurthy N, Kannan S (2007) Fourier transform infrared spectroscopic analysis of a plant (Calotropis Gigantea Linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Romanian J Biophys 17(4):269–276

Ramkumar R, Saravanan P (2021) Characterization of the cellulose fibers extracted from the bark of Piliostigma Racemosa. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1875356

Rao KMM, Rao KM (2005) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 7:288–295. https://doi.org/10.1016/j.compstruct.2005.07.023

Reddy N, Yang Y (2008) Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresour Technol 99(7):2449–2454. https://doi.org/10.1016/j.biortech.2007.04.065

Reddy N, Yang Y (2009) Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym Eng Sci 49(11):2212–2217

Ridzuan MJM, Abdul Majid MS, Afendi M et al (2016) Materials and design, characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Design 89:839–847. https://doi.org/10.1016/j.matdes.2015.10.052

Rodríguez LJ, Orrego CE, Ribeiro I et al (2018) Life-cycle assessment and life-cycle cost study of banana (Musa sapientum) fiber biocomposite materials. Proc CIRP 69:585–590. https://doi.org/10.1016/j.procir.2017.11.145

Rowell RM, Stout HP (2006) Jute and kenaf. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. CRC press (ISBN 9780824725655)

Sa Y, Guo Y, Feng X et al (2017) Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J Chem 41(13):5723–5731

Saba N, Alothman OY, Amutairi Z et al (2019) Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr Build Mater 201:138–148. https://doi.org/10.1016/j.conbuildmat.2018.12.182

Sabil KM, Aziz MA, Lal B, Uemura Y (2013) Effects of torrefaction on the physicochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass Bioenerg 56:351–360. https://doi.org/10.1016/j.biombioe.2013.05.015

Sakji N, Jabli M, Khoffi F et al (2016) Physico-chemical characteristics of a seed fiber arised from Pergularia Tomentosa L. Fiber Polym 17(12):2095–2104

Sanchez ML, Patino W, Cardenas J (2020) Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. J Build Eng 28:101058. https://doi.org/10.1016/j.jobe.2019.101058

Sandin G, Peters GM (2018) Environmental impact of textile reuse and recycling: a review. J Clean Prod. 184:353–365. https://doi.org/10.1016/j.jclepro.2018.02.266

Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: a review. Mater Today- Proc 2(4–5):2959–2967. https://doi.org/10.1016/j.matpr.2015.07.264

Sanjay MR, Siengchin S, Parameswaranpillai J et al (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

Santos EBC, Barros JJP, Moura DAd et al (2019) Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water. J Mater Res Technol 8(1):531–540. https://doi.org/10.1016/j.jmrt.2018.05.005

Sarasini F et al (2015) Effect of different lignocellulosic fibres on poly(ε-caprolactone)-based composites for potential applications in orthotics. RSC Adv 5(30):23798–23809

Sarasini F et al (2017) Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Compos Struct 167:20–29. https://doi.org/10.1016/j.compstruct.2017.01.071

Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

Saravanakumar et al (2018) Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. Int J Polym Anal Charact 23(6):529–536. https://doi.org/10.1080/1023666X.2018.1501931

Sari NH, Padang YA (2019) The characterization tensile and thermal properties of Hibiscus tiliaceus cellulose fibers. IOP Conf Ser Mater Sci Eng 539(1):012031

Sarıkanat M, Seki Y, Sever K et al (2014) Determination of properties of Althea officinalis L. (Marshmallow) fibers as a potential fibre in polymeric composite materials. Compos Part B Eng 57:180–186. https://doi.org/10.1016/j.compositesb.2013.09.041

Sathishkumar TP, Navaneethakrishnan P, Shankar S et al (2013) Characterization of new cellulose Sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20(8):575–593. https://doi.org/10.1080/15685543.2013.816652

Segal L, Creely JJ, Martin AE et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

Seggiani M et al (2017) New bio-composites based on polyhydroxyalkanoates and Posidonia oceanica fibres for applications in a marine environment. Mater 10(4):326. https://doi.org/10.3390/ma10040326

Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng- A 508(1–2):247–252. https://doi.org/10.1016/j.msea.2009.01.043

Seki Y, Sever K, Erden S et al (2012) Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci 123(4):2330–2337. https://doi.org/10.1002/app.34744

Seki Y, Sarıkanat M, Sever K et al (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composite materials. Compos Part B- Eng 44(1):517–523. https://doi.org/10.1016/j.compositesb.2012.03.013

Seki Y, Seki Y, Sarikanat M et al (2016) Evaluation of linden fibre as a potential reinforcement material for polymer composites. J Ind Text 45(6):1221–1238

Seki Y, Kılınç AÇ, Dalmis R et al (2018) Surface modification of new cellulose fiber extracted from Conium Maculatum plant: a comparative study. Cellulose 25(6):3267–3280

Seki Y, Koktas S, Kılınç AÇ et al (2019a) Green alternative treatment for cellulosic fibers: ionic liquid modification of Abelmoschus esculentus fibers with methyl-tri-n-butyl ammonium methyl sulphate. Mater Res Express 6(085104):1–13

Seki Y, Kılınç AC, Dalmis R et al (2019) Characterization of flax, jute and sisal fibers after sodium perborate modification. AATCC J Res 6(6):25–31

Selli F, Erdoğan ÜH, Seydibeyoğlu MÖ (2019) Melt processing of PHBV for functional fibres: effect of additives on process parameters. Mater Res Express 6(11):115344. https://doi.org/10.1088/2053-1591/ab4d19

Semlali Aouragh Hassani FZ, Chakchak H, El Achaby M et al (2020) Date palm fiber extraction and treatment. In: Midani M, Saba N, Alothman OY (eds) Date palm fiber composites, 1st edn, pp 75–91

Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

Senthamaraikannan P, Saravanakumar SS, Arthanarieswaran VP et al (2016) Physicochemical properties of new cellulosic fibers from bark of Acacia Planifrons. Int J Polym Anal Charact 21(3):207–213. https://doi.org/10.1080/1023666X.2016.1133138

Senthamaraikannan P, Sanjay MR, Subrahmanya Bhat K (2019) Characterization of natural cellulosic fiber from bark of Albizia amara. J Nat Fiber 16(8):1124–1131. https://doi.org/10.1080/15440478.2018.1453432

Sepe R, Bollino F, Boccarusso L et al (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B- Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

Seyam AFM, Monteiro AS, Midani M et al (2017) Effect of structural parameters on the tensile properties of multilayer 3D composites from Tururi palm tree (Manicaria saccifera Gaertn) fibrous material. Compos Part B- Eng 111:17–26. https://doi.org/10.1016/j.compositesb.2016.11.040

Sghaier S, Zbidi F, Zidi M (2009) Characterization of doum palm fibers after chemical treatment. Text Res J 12:1108–1114. https://doi.org/10.1177/0040517508101623

Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 195:566–575. https://doi.org/10.1016/j.carbpol.2018.04.127

Shebani AN, Van Reenen J, Meincken M (2009) The effect of wood species on the mechanical and thermal properties of wood-LLDPE composites. J Compos Mater 43(11):1305–1318. https://doi.org/10.1177/0021998308104548

Shyam Kumar R, Balasundar P, Al-Dhabi NA et al (2021) A new natural cellulosic Pigeon Pea (Cajanus cajan) Pod fiber characterization for bio-degradable polymeric composites. J Nat Fiber. https://doi.org/10.1080/15440478.2019.1689887

Silva Moura AD, Demori R, Leão RM et al (2019) The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater Today Commun 18:191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006

Singh S, Mohanty AK, Sugie T et al (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39(5):875–886. https://doi.org/10.1016/j.compositesa.2008.01.004

Siqueira DD, Luna CBB, Ferreira ESB et al (2020) Tailored PCL/Macaíba fiber to reach sustainable biocomposites. J Mater Res Technol 9(5):9691–9708. https://doi.org/10.1016/j.jmrt.2020.06.066

Sisson WA (1935) X-ray studies of crystallite orientation in cellulose fibers. Ind Eng Chem 27(1):51–56

Siva R, Valarmathi TN, Palanikumar K et al (2020) Study on novel natural cellulosic fiber from Kigelia Africana fruit: Characterization and analysis. Carbohydr Polym 244:116494. https://doi.org/10.1016/j.carbpol.2020.116494

Sivaram NM, Gopal PM, Barik D (2019) Toxic waste from textile industries. In: Barik D (ed) Energy from toxic organic waste for heat and power generation. Woodhead Publishing, New Delhi

Skundric P, Kostic M, Medovic A et al (2007) Wetting properties of hemp fibers by plasma treatment. J Nat Fiber 4(1):25–33. https://doi.org/10.1300/J395v04n01_03

Smith MKM, Paleri DM, Abdelwahab M et al (2020) Sustainable composites from poly(3-hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chem. 22(12):3906–3916. https://doi.org/10.1039/d0gc00365d

Sorrentino G (2021) 2021) Introduction to emerging industrial applications of cannabis (Cannabis sativa L.) Rendiconti Lincei. Sci Fisiche e Nat 32:233–243

Spathas T (2017) The environmental performance of high value recycling for the fashion industry LCA for four case studies. (Master), Chalmers University of Technology, Sweden.

Sreenivasan VS, Somasundaram S, Ravindran D, V, et al (2011) Microstructural, physico-chemical and mechanical characterization of Sansevieria cylindrica fibres – an exploratory investigation. Mater Design 32:453–461. https://doi.org/10.1016/j.matdes.2010.06.004

Stark NM, Yelle DJ, Agarwal UP (2016) Techniques for characterizing lignin, Chap 4. In: Lignin in polymeric composites, pp 49–66

Stevulova N, Schwarzova I, Hospodarova V et al (2016) Implementation of waste cellulosic fibres into building materials. Chem Eng Trans 50:367–372

Strahan GD, Mullen CA, Boateng AA (2011) Characterizing biomass fast pyrolysis oils by 13C NMR and chemometric analysis. Energ Fuel 25:5452–5461. https://doi.org/10.1021/ef2013166

Subramanian SG, Rajkumar R, Ramkumar T (2021) Characterization of natural cellulosic fiber from Cereus Hildmannianus. J Nat Fiber 18(3):343–354. https://doi.org/10.1080/15440478.2019.1623744

Sunija AJ, Ilango SS, Vinod Kumar KP (2015) Thespesia populnea reinforced cashew nut husk tannin-based polyurethane composites. J Nat Fiber 12(5):481–493. https://doi.org/10.1080/15440478.2014.962214

Suryanto H, Marsyahyo E, Ira wan YS et al (2014) Morphology, structure and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis Globulosa). J Nat Fiber 11(4):333–351. https://doi.org/10.1080/15440478.2013.879087

Suryanto H, Solichin S, Yanuhar U (2016) Natural Cellulose Fiber from Mendong Grass (Fimbristylis Globulosa). In: Fiber plants in biology, biotechnology and applications. Springer, Heidelberg

Tajvidi M, Takemura A (2010) Thermal degradation of natural fiber reinforced polypropylene composites. J Thermoplast Compos Mater 23:281–298. https://doi.org/10.1177/0892705709347063

Tayeb AH, Amini E, Ghasemi S et al (2018) Cellulose nanomaterials—binding properties and applications: a review. Molecules 23(2684):1–24

Teixeira FP, Fonseca O, Gomes M et al (2019) Degradation mechanisms of curaua, hemp and sisal fibers exposed to elevated temperatures. BioResources 14(1):1494–1511

Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by x-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Ber 89:118–131

Todor MP, Bulei C, Kiss I et al (2019) Recycling of textile wastes into textile composites based on natural fibres: the valorisation potential. IOP Conf Ser Mater Sci Eng 477:012004

Tofanica BM, Cappelletto E, Gavrilescu D, Mueller K (2011) Properties of rapeseed (Brassica Napus) stalks fibers. J Nat Fiber 8(4):241–262. https://doi.org/10.1080/15440478.2011.626189

Tran LQN, Yuan XW, Bhattacharya D et al (2015) Fiber-matrix interfacial adhesion in natural fiber composites. Int J Mod Phys B 29(1540018):1–7. https://doi.org/10.1142/S0217979215400184

Tu L, Xiao W, Duan W et al (2019) Polydopamine clay functionalized Calotropis gigantea fiber: a recyclable oil-absorbing material with large lumes. J Nat Fiber 16(8):1156–1165. https://doi.org/10.1080/15440478.2018.1455618

Tu H, Zhu M, Duan B et al (2020) Recent progress in high-strength and robust regenerated cellulose materials. Adv Mater 2000682:1–22

Unal F, Avinc O, Yavas A (2020) Sustainable textile designs made from renewable biodegradable sustainable natural abaca fibers. In: Muthu SS, Gardetti MA (eds) Sustainability in the textile and apparel industries sustainable textiles clothing design and repurposing. Springer, Cham

Van der Werf HMG, Turunen L (2008) The environmental impacts of the production of hemp and flax textile yarn. Ind Crop Prod 27(1):1–10. https://doi.org/10.1016/j.indcrop.2007.05.003

Vanzetto AB, Beltrami LVR, Zattera AJ (2021) Textile waste as precursors in nanocrystalline cellulose synthesis. Cellulose 28:6967–6981. https://doi.org/10.1007/s10570-021-03982-9

Vijay R, Singaravelu L, Vinod A et al (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol 125:99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

Vijay R, Dhilip JDJ, Gowtham S et al (2020a) Characterization of natural cellulose fiber from the barks of Vachellia farnesiana. J Nat Fiber. https://doi.org/10.1080/15440478.2020.1764457

Vijay R, Manoharan S, Arjun S et al (2020b) Characterization of silane-treated and untreated natural fibers from stem of Leucas Aspera. J Nat Fiber. https://doi.org/10.1080/15440478.2019.1710651

Vinayagamoorthy R (2019) Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. J Nat Fiber 16(2):163–174. https://doi.org/10.1080/15440478.2017.1410513

Vinod A, Vijay R, Lenin Singaravelu D et al (2019) Characterization of untreated and treated natural fibers extracted from the stem of Catharanthus roseus. Mater Res Express 6(8):085406

Vishnu Vardhini KJ, Murugan R (2017) Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. J Nat Fiber 14(2):217–227. https://doi.org/10.1080/15440478.2016.1193086

Wakelyn PJ et al (2019) Structural properties of cotton in cotton fiber chemistry and technology. CRC Press, Boca Raton

Wanassi B, Azzouz B, Hassen MB (2016) Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers. Ind Crop Prod 87:27–32. https://doi.org/10.1016/j.indcrop.2016.04.020

Wang HM, Postle R (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73(8):664–669. https://doi.org/10.1177/004051750307300802

Wang Y, Zhang Y, Polk M et al (2003) Recycling of carpet and textile fibers. In: Andrady AL (ed) Plastics and the environment. Wiley, Hoboken, pp 697–725

Wang J, Jin W, Hou Y et al (2013a) Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int J Biol Macromol 57:26–29

Wang Z, McDonald AG, Westerhof RJM et al (2013b) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrolys 100:56–66. https://doi.org/10.1016/j.jaap.2012.11.017

Wang H, Xian G, Li H (2015) Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos Part A- Appl Sci Manuf 76:172–180. https://doi.org/10.1016/j.compositesa.2015.05.027

Wang C, Bai S, Yue X et al (2016) Extraction and performance characterization of the Carexmeyeriana Fiber. J Nat Fiber 13(6):759–768. https://doi.org/10.1080/15440478.2015.1137528

Wang H, Memon H, Hassan EAM et al (2019b) Effect of fiber modification on mechanical properties of jute fiber composite. Mater 12(8):1226

Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

Xia L, Zhang C, Wang A et al (2020) Morphological and properties of Juncus effusus fiber after alkali treatment. Cellulose 27(4):1909–1920

Xu N et al (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatment in Miscanthus. Biotechnol Biofuels 5(58):1–12

Xu C, Zhu S, Xing C et al (2015) Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process. PLoS One 10(4):1–11. https://doi.org/10.1371/journal.pone.0122123

Yadav M, Rengasamy RS, Gupta D (2019) Characterization of pearl millet (Pennisetum glaucum) waste. Carbohydr Polym 212:160–168. https://doi.org/10.1016/j.carbpol.2019.02.034

Yao F, Wu Q, Lei Y et al (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579. https://doi.org/10.1007/s10570-020-03177-8

Yatsenko DA, Medvedeva TB (2019) Estimating crystality index of microcrystalline cellulose using diffraction methods. J Struct Chem 60(9):1430–1436. https://doi.org/10.1134/S0022476619090075

Yusriah L, Sapuan SM, Zainudin ES et al (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180. https://doi.org/10.1016/j.jclepro.2014.02.025

Zah R, Hischier R, Leão AL et al (2007) Curauá fibers in the automobile industry – a sustainability assessment. J Clean Prod 15(11–12):1032–1040. https://doi.org/10.1016/j.jclepro.2006.05.036

Zaman SU, Shahid S, Shaker K et al (2021) Development and characterization of chemical and fire resistant jute/unsaturated polyester composites. J Text I:1–10. https://doi.org/10.1080/00405000.2021.1889131

Zampori L, Dotelli G, Vernelli V (2013) Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. Environ Sci Technol 47(13):7413–7420

Zannen S, Ghali L, Halimi MT et al (2014) Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres. Adv Mater Phys Chem 4(10):203–216

Zeng B, Wang X, Byrne N (2019) Development of cellulose based aerogel utilizing waste denim-a morphology study. Carbohydr Polym 205:1–7. https://doi.org/10.1016/j.carbpol.2018.09.070

Zhang J, Zhang H, Zhang J (2014) Evaluation of liquid ammonia treatment on surface characteristics of hemp fibre. Cellulose 21:569–579

Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD. NMR Acid Hydrol Carbohyd Polym 68(2):235–241

Zhao D, Liu P, Pan C et al (2017) Flax retting by degumming composite enzyme produced by Bacillus licheniformis HDYM-04 and effect on fiber properties. J Text I 108(4):507–510

Zhong J, Li H, Yu J et al (2011) Effects of natural fiber surface modification on mechanical properties of Poly(lactic acid) (PLA)/Sweet Sorghum fiber composites. Polym Plast Technol Eng 50(15):1583–1589. https://doi.org/10.1080/03602559.2011.557817

Zhou Z, Wang J, Huang X et al (2012) Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers. Appl Surf Sci 258:4411–4416. https://doi.org/10.1016/j.apsusc.2011.12.126

Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Heidelberg