A review on CO2 mitigation in the Iron and Steel industry through Power to X processes

Journal of CO2 Utilization - Tập 46 - Trang 101456 - 2021
Manuel Bailera1, Pilar Lisbona2, Begoña Peña1, Luis M. Romeo1
1Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, Campus Río Ebro, María de Luna 3, 50018, Zaragoza, Spain
2Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, 2016, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models, Endeavour, 40, 178, 10.1016/j.endeavour.2016.07.002

2015

Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Renewable energy progress report, European Commission, 2015.

European Commission, 2014

De Ras, 2019, Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering, Curr. Opin. Chem. Eng., 26, 81, 10.1016/j.coche.2019.09.001

Abdul Quader, 2016, Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program, Renew. Sustain. Energy Rev., 55, 537, 10.1016/j.rser.2015.10.101

Leeson, 2017, A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources, Int. J. Greenh. Gas Control., 61, 71, 10.1016/j.ijggc.2017.03.020

Jin, 2017, The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace, Resour. Conserv. Recycl., 117, 58, 10.1016/j.resconrec.2015.07.008

Arasto, 2014, Oxygen blast furnace with CO2 capture and storage at an integrated steel mill-Part I: technical concept analysis, Int. J. Greenh. Gas Control., 30, 140, 10.1016/j.ijggc.2014.09.004

Tsupari, 2015, Oxygen blast furnace with CO2 capture and storage at an integrated steel mill - Part II: economic feasibility in comparison with conventional blast furnace highlighting sensitivities, Int. J. Greenh. Gas Control., 32, 189, 10.1016/j.ijggc.2014.11.007

Arasto, 2013, Post-combustion capture of CO2 at an integrated steel mill - Part I: technical concept analysis, Int. J. Greenh. Gas Control., 16, 271, 10.1016/j.ijggc.2012.08.018

Tsupari, 2013, Post-combustion capture of CO2 at an integrated steel mill - Part II: economic feasibility, Int. J. Greenh. Gas Control., 16, 278, 10.1016/j.ijggc.2012.08.017

Berrio, 2012

K. W, 2015

Bailera, 2017, Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2, Renew. Sustain. Energy Rev., 69, 292, 10.1016/j.rser.2016.11.130

Strohbach, 2015, Audi e-gas plant stabilizes electrical grid, Press Release - Audi MediaInfo, Technol. Innov. Commun.

Kuparinen, 2019, 2019

Bailera, 2017, Power to gas-electrochemical industry hybrid systems: a case study, Appl. Energy, 202, 435, 10.1016/j.apenergy.2017.05.177

Ariyama, 2019, Diversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigation, J. Sustain. Metall., 5, 276, 10.1007/s40831-019-00219-9

Ariyama, 2019, 鉄鋼における二酸化炭素削減長期目標達成に向けた技術展望 (Technological prospects for achieving long-term carbon dioxide reduction goals for steel), Tetsu-to-Hagané, 105, 567, 10.2355/tetsutohagane.TETSU-2019-008

International Energy Agency, 2020

IEA, Tracking Industry 2019, Paris, 2019.

Fenton, 2019

Wang, 2015, Low temperature electrolysis for iron production via conductive colloidal electrode, RSC Adv., 5, 5501, 10.1039/C4RA14576C

A. Otto, M. Robinius, T. Grube, S. Schiebahn, A. Praktiknjo, D. Stolten, Power-to-Steel : Reducing CO 2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry, (n.d.). doi:10.3390/en10040451.

Hamadeh, 2018, Detailed modeling of the direct reduction of iron ore in a shaft furnace, Materials (Basel), 11, 10.3390/ma11101865

Shams, 2015, Modeling and simulation of the MIDREX shaft furnace: reduction, transition and cooling zones, JOM, 67, 2681, 10.1007/s11837-015-1588-0

Yilmaz, 2017, Modeling and simulation of the use of direct reduced iron in a blast furnace to reduce carbon dioxide emissions, J. Clean. Prod., 164, 1519, 10.1016/j.jclepro.2017.07.043

Ramakgala, 2019, A review of ironmaking by direct reduction processes: quality requirements and sustainability, Procedia Manuf., 35, 242, 10.1016/j.promfg.2019.05.034

Environmental Protection Agency, 2012

Feynerol, 2017, Reactivity of suspended iron oxide particles in low temperature alkaline electrolysis, J. Appl. Electrochem., 4, 1

Kvalheim, 2013, High temperature electrolysis for liquid Iron production, ECS Trans., 50, 63, 10.1149/05044.0063ecst

Judge, 2017, E-logpO2 diagrams for ironmaking by molten oxide electrolysis, Electrochim. Acta, 247, 1088, 10.1016/j.electacta.2017.07.059

Wiencke, 2018, Electrolysis of iron in a molten oxide electrolyte, J. Appl. Electrochem., 48, 115, 10.1007/s10800-017-1143-5

Allanore, 2013, A new anode material for oxygen evolution in molten oxide electrolysis, Nature, 497, 353, 10.1038/nature12134

Kim, 2011, Electrolysis of molten Iron oxide with an iridium anode : the role of electrolyte basicity, J. Electrochem. Soc., 158, 101, 10.1149/1.3623446

Gao, 2017, Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO2–CaO–MgO–Al2O3 molten slag at 1723 K, Phys. Chem. Chem. Phys., 19, 15876, 10.1039/C7CP01945A

Licht, 2010, High solubility pathway for the carbon dioxide free production of iron, Chem. Commun. (Camb.), 46, 7004, 10.1039/c0cc01594f

Licht, 2011, Chemical mechanism of the high solubility pathway for the carbon dioxide free production of iron w, Chem. Commun. (Camb.), 47, 3081, 10.1039/c0cc05581f

Licht, 2011, S.T.E.P. Iron, a Chemistry of Iron Formation without CO2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities, J. Phys. Chem. C., 115, 25138, 10.1021/jp2078715

Li, 2016, Sustainable electrochemical synthesis of large grain- or catalyst-sized Iron, J. Sustain. Metall., 2, 405, 10.1007/s40831-016-0062-8

Allanore, 2010, Experimental investigation of cell design for the electrolysis of iron oxide suspensions in alkaline electrolyte, J. Appl. Electrochem., 40, 1957, 10.1007/s10800-010-0172-0

Parkinson, 2017, Techno-economic analysis of a process for CO2-free coproduction of iron and hydrocarbon chemical products, Chem. Eng. J., 313, 136, 10.1016/j.cej.2016.12.059

Fischedick, 2014, Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod., 84, 563, 10.1016/j.jclepro.2014.05.063

Weigel, 2016, Multicriteria analysis of primary steelmaking technologies, J. Clean. Prod., 112, 1064, 10.1016/j.jclepro.2015.07.132

Ahmad, 2010, Using water hydrogen instead of reducing gas in the production of direct reduced iron (DRI), J. Adv. Oxid. Technol., 13, 124

Ranzani Da Costa, 2013, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Clean. Prod., 46, 27, 10.1016/j.jclepro.2012.07.045

Vogl, 2018, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Clean. Prod., 203, 736, 10.1016/j.jclepro.2018.08.279

Bhaskar, 2020, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13, 1, 10.3390/en13030758

Sortwell, 2018

Yilmaz, 2017, Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions, J. Clean. Prod., 154, 488, 10.1016/j.jclepro.2017.03.162

Nuber, 2006, Circored fine ore direct reduction, Raw Mater. Ironmak., 37

Midrex, Direct from Midrex, News + Resoruces. First Quart. 2020. (2020). www.midrex.com/wp-content/uploads/Midrex-2020-DFM1QTR-Final.pdf.

Duarte, 2019, Hydrogen-based steelmaking, Millenium Steel., 18

ArcelorMittal, 2019

Hölling, 2018, Direct reduction: transition from natural gas to hydrogen?, ICSTI Conf.

SDR Platform, 2019

Bailera, 2020

Chen, 2012, Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace, Int. J. Hydrogen Energy, 37, 11748, 10.1016/j.ijhydene.2012.05.021

Astier, 1982, Technico-economic potentialities of hydrogen utilization for steel production, Int. J. Hydrogen Energy, 7, 671, 10.1016/0360-3199(82)90192-6

Nogami, 2012, Simulation of blast furnace operation with intensive hydrogen injection, ISIJ Int., 52, 1523, 10.2355/isijinternational.52.1523

European Environmental Agency, 2016

Patisson, 2020, Hydrogen ironmaking: how it works, Metals (Basel), 10, 1, 10.3390/met10070922

Huitu, 2015, Optimization of midrex direct reduced iron use in ore-based steelmaking, Steel Res. Int., 86, 456, 10.1002/srin.201400091

He, 2017, Assessment on the energy flow and carbon emissions of integrated steelmaking plants, Energy Rep., 3, 29, 10.1016/j.egyr.2017.01.001

Kato, 2012, Hydrogen utilization for carbon recycling iron making system, ISIJ Int., 52, 1433, 10.2355/isijinternational.52.1433

Kato, 2010, Carbon recycling for reduction of carbon dioxide emission from iron-Making process, ISIJ Int., 50, 181, 10.2355/isijinternational.50.181

Suzuki, 2015, Quantitative evaluation of CO2 emission reduction of active carbon recycling energy system for ironmaking by modeling with aspen plus, ISIJ Int., 55, 340, 10.2355/isijinternational.55.340

Küngas, 2020, Review—electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies, J. Electrochem. Soc., 167, 10.1149/1945-7111/ab7099

Dipu, 2012, Carbon dioxide electrolysis for a carbon-recycling iron-making system, ISIJ Int., 52, 1427, 10.2355/isijinternational.52.1427

Kato, 2011, Performance analysis of active carbon recycling energy system, Biol. Sci., 53, 1017

Dipu, 2014, Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system, Nucl. Eng. Des., 271, 30, 10.1016/j.nucengdes.2013.11.004

Fujii, 2015, Possibility of application of solid oxide electrolysis cell on a smart iron-making process based on an active carbon recycling energy system, ISIJ Int., 55, 387, 10.2355/isijinternational.55.387

Numata, 2019, Carbon dioxide reduction on a metal-supported solid oxide electrolysis cell, ISIJ Int., 59, 628, 10.2355/isijinternational.ISIJINT-2018-430

鉄鋼プロセスにおける次世代CO2削減技術調査・検討, 2007

Wang, 2013, Ni-Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte, J. Mater. Chem. A Mater. Energy Sustain., 1, 12455, 10.1039/c3ta11863k

Hayashi, 2015, Process evaluation of use of high temperature gas-cooled reactors to an ironmaking system based on active carbon recycling energy system, ISIJ Int., 55, 348, 10.2355/isijinternational.55.348

Hisashige, 2019, CO2 emission reduction and exergy analysis of smart steelmaking system adaptive for flexible operating conditions, ISIJ Int., 59, 598, 10.2355/isijinternational.ISIJINT-2018-355

Rist, 1967, A dual graphic representation of the blast-furnace mass and heat balances, JOM, 19, 50, 10.1007/BF03378564

Yamamoto, 2004

Kato, 2014, Utilization of HTGR on active carbon recycling energy system, Nucl. Eng. Des., 271, 79, 10.1016/j.nucengdes.2013.11.014

Hashimoto, 1994, Metastable metals for “green” materials for global atmosphere conservation and abundant energy supply, Mater. Sci. Eng. A, 179–180, 27, 10.1016/0921-5093(94)90158-9

Rosenfeld, 2020, Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: a techno-economic and environmental study, Renew. Energy, 147, 1511, 10.1016/j.renene.2019.09.053

Remus, 2013

Kim, 2020, Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst, Energy, 198, 10.1016/j.energy.2020.117355

Schlüter, 2018, Modeling the catalytic conversion of steel mill gases using the example of methanol synthesis, Chemie-Ingenieur-Technik, 90, 1541, 10.1002/cite.201800021

Akiyama, 1994, Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission and effective use of exergy, ISIJ Int., 33, 1136, 10.2355/isijinternational.33.1136

Muramatsu, 1993, Methanol synthesis from blast furnace off gas, ISIJ Int., 33, 1144, 10.2355/isijinternational.33.1144

Shin, 2020, Development and techno-economic study of methanol production from coke-oven gas blended with Linz Donawitz gas, Energy., 200, 10.1016/j.energy.2020.117506

Deerberg, 2018, The project Carbon2Chem®, Chemie-Ingenieur-Technik, 90, 1365, 10.1002/cite.201800060

Stießel, 2018, Methodology for the evaluation of CO2-Based syntheses by coupling steel industry with chemical industry, Chemie-Ingenieur-Technik, 90, 1392, 10.1002/cite.201800030

Tremel, 2015, Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis, Int. J. Hydrogen Energy, 40, 11457, 10.1016/j.ijhydene.2015.01.097

Kosow, 2008

Gausemeier, 1995

Bender, 2018, Coupled production of steel and chemicals, Chemie-Ingenieur-Technik, 90, 1782, 10.1002/cite.201800048

Cavaliere, 2019, 2019

Ariyama, 2016, Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works, ISIJ Int., 56, 1681, 10.2355/isijinternational.ISIJINT-2016-210

Sahu, 2015, Applicability of top gas recycle blast furnace with downstream integration and sequestration in an integrated steel plant, Steel Res. Int., 86, 502, 10.1002/srin.201400196

Keys, 2019

Zuo, 2009, The trial of the top gas recycling blast furnace at LKAB’s EBF and Scale-up, La Rev. Métallurgie, 106, 387, 10.1051/metal/2009067

Danloy, 2009, ULCOS - Pilot testing of the Low-CO2 Blast Furnace process at the experimental BF in Luleå, Rev. Metall. Cah. D’Informations Tech., 106, 1

Von Schéele, 2010, Oxyfuel combustion in the steel industry: energy efficiency and decrease of CO2 emissions

von Schéele, 2011, Creating customer value as a solutions provider to leading stainless and Special steel producers

von Schéele, 2015, Technologies for energy and operation efficiency in stainless steel production

SIDERWIN - Objectives (Project Web Page), (2019). https://www.siderwin-spire.eu/content/objectives (accessed July 29, 2020).

CORDIS, 2020

Pilot Plant Building Construction, Newsl. SIDERWIN No. 2. (2019). https://www.siderwin-spire.eu/sites/siderwin.drupal.pulsartecnalia.com/files/documents/Newsletter_SIDERWIN_2019_02.pdf (accessed July 29, 2020).

K1-MET, 2016

Sormann, 2018, The Way to a carbon free steelmaking

Seftejani, 2020, Slag formation during reduction of Iron oxide using hydrogen plasma smelting reduction, Materials (Basel), 13, 935, 10.3390/ma13040935

SAAB-LKAB-Vattenfall, 2018

2019, European commission, strengthening strategic value chains for a future-ready EU industry

Forschung für Nachhaltige Entwicklung (FONA), 2017

2018, 10

2019, PEM electrolyser from Siemens for Salzgitter steelmaking hydrogen, Fuel Cells Bull., 2019, 10, 10.1016/S1464-2859(19)30520-6

H2Future (Project web page), (n.d.). www.h2future-project.eu (accessed July 29, 2020).

Felsbach, 2019

Leithinger, 2020

ThyssenKrupp, 2020

Stagge, 2019, Hydrogen instead of coal

ThyssenKrupp, 2019

Stagge, 2020

2019, Infographics: two. Technological paths, one goal, Thyssenkrupp Steel Mag.

i3upgrade project web page, (2018). www.i3upgrade.eu (accessed June 25, 2020).

Wolf-zöllner, 2019, Dynamic methanation of by-product gases from integrated steelworks

K1-MET, 2020

European Union, 2018

FReSMe project web page, (2017). www.fresme.eu (accessed June 25, 2020).

FReSMe: From residual steel gases to methanol, Aportando Valor al CO2 (2019). http://www.fresme.eu/events/pdf/FReSMe%20Aportando%20Valor%20al%20CO2_vdef.pdf.

CORDIS, 2019

Pardo, 2019, 50

ThyssenKrupp, Carbon2Chem (Project web page), (2020). https://www.thyssenkrupp.com/en/newsroom/content-page-162.html (accessed July 31, 2020).

Wich, 2018, Carbon2Chem® – technical center in Duisburg, Chemie-Ingenieur-Technik., 90, 1369, 10.1002/cite.201800067

Fraunhofer UMSICHT, Carbon2Chem® joint project, (2020). https://www.umsicht.fraunhofer.de/en/strategic-lines-of-research/carbon-cycle.html (accessed July 31, 2020).

2018, Special issue: Carbon2Chem®, Chemie Ing. Tech., 90, 1349

INEA, eForFuel, (2020). https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/biomass-biofuels-alternative-fuels/eforfuel (accessed August 3, 2020).

eForFuel (Project web page), (2020). https://www.eforfuel.eu/ (accessed August 3, 2020).

CORDIS, 2019

European Commission, 2018, 773

Salzgitter A.G., SALCOS Project, (2020). https://salcos.salzgitter-ag.com/en/.

DISIPO, 2020

Barati, 2014, Application of slag engineering fundamentals to continuous steelmaking, 305