A review of steel slag usage in construction industry for sustainable development
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmedzade, P., & Sengöz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1–3), 300–305.
Alanyali, H., Çöl, M., Yılmaz, M., & Karagöz, Ş. (2009). Concrete produced by steel-making slag (basic oxygen furnace) addition in Portland cement. International Journal of Applied Ceramic Technology, 6(6), 736–748.
Altun, I. A., & Yılmaz, I. (2002). Study on steel furnace slags with high MgO as additive in Portland cement. Cement and Concrete Research, 32(8), 1247–1249.
Anastasiou, E. K., Papayianni, I., & Papachristoforou, M. (2014). Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Materials and Design, 59, 454–460.
Arribas, I., Vegas, I., San-Jose, J. T., & Manso, J. M. (2014). Durability studies on steelmaking slag concretes. Materials and Design, 63, 168–176.
ASA-Australasian Slag Association. (2002). A guide to the use of iron and steel slag in roads. http://www.asa-inc.org.au/uploads/default/files/asa_guide_to_the_use_of_iron_and_steel_slag_in_roads.pdf .
Asi, I. M., Qasrawi, H. Y., & Shalabi, F. I. (2007). Use of steel slag aggregate in asphalt concrete mixes. Canadian Journal of Civil Engineering, 34(8), 902–911.
Barišić, I., Dimter, S., & Netinger, I. (2010). Possibilities of application of slag in road construction. Technical Gazette, 17(4), 523–528.
Barišic, I., Dimter, S., & Rukavina, T. (2014). Strength properties of steel slag stabilized mixes. Composites: Part B, 58, 386–391.
Belhadj, E., Diliberto, C., & Lecomte, A. (2014). Properties of hydraulic paste of basic oxygen furnace slag. Cement & Concrete Composites, 45, 15–21.
Calmon, J. L., Tristão, F. A., Giacometti, M., Meneguelli, M., Moratti, M., & Teixeira, J. E. S. L. (2013). Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes. Construction and Building Materials, 40, 1046–1053.
Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J. L., Proux, O., et al. (2007). Environmental impacts of steel slag reused in road construction, a crystallographic and molecular (XANES) approach. Journal of Hazardous Materials, 139(3), 537–542.
Chinese National Standard GB/T 12957–05. (2005). The Method for the testing of steel-making slags’ hydraulic reactivity in determining the steel-making slag to be used as cement mixture additive. Beijing: Standardization Administration of the People’s Republic of China.
Chinese National Standard GB13590-92. (1992). Steel and iron slag cement. Beijing: Standardization Administration of the People’s Republic of China.
Devi, V. S., & Gnanavel, B. K. (2014). Properties of concrete manufactured using steel slag. Procedia Engineering, 97, 95–104.
Ducman, V., & Mladenovič, A. (2011). The potential use of steel slag in refractory concrete. Materials Characterization, 62(7), 716–723.
Emery, J. (1984). Steel slag utilization in asphalt mixes. National Slag Association MF186-1. http://www.nationalslag.org/sites/nationalslag/files/documents/nsa_186-1_steel_slag_utilization_in_asphalt_mixes.pdf . Accessed 05 May 2015.
ERMCO-European Ready Mixed Concrete Organization. (2014). Ready-mixed concrete industry statistics. http://www.ermco.eu/document/ermco-statistics-2013-pdf/ . Accessed 18 Oct 2015.
EUROSLAG (The European Association Representing Metallurgical Slag Producers and Processors) (2015). http://www.euroslag.com/status-of-slag/legislation/ . Accessed 05 May 2015.
Faraone, N., Tonello, G., Furlani, E., & Maschio, S. (2009). Steelmaking slag as aggregate for mortars: Effects of particle dimension on compression strength. Chemosphere, 77(8), 1152–1156.
Gokul, J., Suganthan, S., Venkatram, R., & Karthikeyan, K. (2012). Mild steel slag as a potential replacement for concrete. International Journal of Current Research, 4(11), 106–109.
Guo, X., & Huisheng, S. (2013). Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement based materials. Journal of Materials in Civil Engineering, 25(12), 1990–1993.
Guo, X., Shi, H., & Wu, K. (2014). Effects of steel slag powder on workability and durability of concrete. Journal of Wuhan University of Technology-Materials Science Edition, 29(4), 733–739.
Hainin, M. R., Yusoff, N. I. M., Sabri, M. F. M., Aziz, M. A. A., Hameed, M. A. S., & Reshi, W. F. (2012). Steel slag as an aggregate replacement in Malaysian hot mix asphalt. ISRN Civil Engineering, 2012, Article ID 459016.
Han, Y. M., Jung, H. Y., & Seong, S. K. (2002). A fundamental study on the steel slag aggregate for concrete. Geosystem Engineering, 5(2), 38–45.
Korany, Y., & El-Haggar, S. (2001). Using slag in manufacturing masonry bricks and paving units. TMS Journal, 19(1), 97–106.
Kourounis, S., Tsivilis, S., Tsakiridis, P. E., Papadimitriou, G. D., & Tsibouki, Z. (2007). Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 37(6), 815–822.
Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T. C., Ravi, Kumar B., Das, S. K., & Mehrotra, S. P. (2008). Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement. Cement and Concrete Composites, 30(8), 679–685.
Kuo, W. T., Shu, C. Y., & Han, Y. W. (2014). Electric arc furnace oxidizing slag mortar with volume stability for rapid detection. Construction and Building Materials, 53, 635–641.
Li, D. X., Fu, X. H., Wu, X. Q., & Tang, M. S. (1997). Durability study of steel slag cement. Cement and Concrete Research, 27(7), 983–987.
Li, J., Yu, Q., Wei, J., & Zhang, T. (2011). Structural characteristics and hydration kinetics of modified steel slag. Cement and Concrete Research, 41(3), 324–329.
Lizarazo-Marriaga, J., Claisse, P., & Ganjian, E. (2011). Effect of steel slag and Portland cement in the rate of hydration and strength of blast furnace slag pastes. Journal of Materials in Civil Engineering, 23(2), 153–160.
Lun, Y., Zhou, M., Cai, X., & Xu, F. (2008). Methods for improving volume stability of steel slag as fine aggregate. Journal of Wuhan University of Technology-Materials Science Edition, 23(5), 737–742.
Manso, J. M., Gonzalez, J. J., & Polanco, J. A. (2004). Electric arc furnace slag in concrete. Journal of Materials in Civil Engineering, 16(6), 639–645.
Manso, J. M., Losan˜ez, M., Polanco, J. A., & Gonzalez, J. J. (2005). Ladle furnace slag in construction. Journal of Materials in Civil Engineering, 17(5), 513–518.
Manso, J. M., Polanco, J. A., Losan˜ezc, M., & Gonzalez, J. J. (2006). Durability of concrete made with EAF slag as aggregate. Cement and Concrete Composites, 28(6), 528–534.
Maslehuddin, M., Sharif, A. M., Shameem, M., Ibrahim, M., & Barry, M. S. (2003). Comparison of properties of steel slag and crushed limestone aggregate concretes. Construction and Building Materials, 17(2), 105–112.
Meyer, C. (2009). The greening of the concrete industry. Cement & Concrete Composites, 31(8), 601–605.
Monshi, A., & Asgarani, M. K. (1999). Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 29(9), 1373–1377.
Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293.
Olonade, K. A., Kadiri, M. B., & Aderemi, P. O. (2015). Performance of steel slag as fine aggregate in structural performance of steel slag as fine aggregate in structural concrete. Nigerian Journal of Technology, 34(3), 452–458.
Onoue, K., Tokitsu, M., Ohtsu, M., & Bier, T. A. (2014). Fatigue characteristics of steel-making slag concrete under compression in submerged condition. Construction and Building Materials, 70, 231–242.
Özkan, Ö. (2006). Heat effects on cements produced with GBSF and SS additives. Journal of materials science, 41(21), 7130–7140.
Özkan, Ö., Yılmaz, C., & Koubaa, A. (2013). Prediction of sulfate resistance of cements produced with GBFS and SS additives using artificial neural network. International Journal of Materials and Product Technology, 46(4), 215–231.
Papayianni, I., & Anastasiou, E. (2010). Production of high-strength concrete using high volume of industrial by-products. Construction and Building Materials, 24(8), 1412–1417.
Pati, P. R., & Satapathy, A. (2015). Development of wear resistant coatings using LD slag premixed with Al2O3. Journal of Material Cycles and Waste Management, 17(1), 135–143.
Pellegrino, C., & Gaddo, V. (2009). Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement & Concrete Composites, 31(9), 663–671.
Peng, Y., Hu, S., & Ding, Q. (2010). Preparation of reactive powder concrete using fly ash and steel slag powder. Journal of Wuhan University of Technology-Materials Science Edition, 25(2), 349–354.
Polanco, J. A., Manso, J. M., Setién, J., & González, J. J. (2011). Strength and durability of concrete made with electric steelmaking slag. ACI Materials Journal, 108(2), 196–203.
Post, P. A., & Alsop, J. W. (1995). The cement plant operations handbook (1st ed.). Dorking: Tradeship Publications Ltd.
Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., et al. (2000). Physical and chemical characteristics of blast furnace, and electric arc furnace steel industry slags. Environmental Science and Technology, 34(8), 1576–1582.
Qian, G. R., & Suna, D. D. (2002). Autoclave properties of kirschsteinite-based steel slag. Cement and Concrete Research, 32(9), 1377–1382.
Rai, A., Prabakar, J., Raju, C. B., & Morchalle, R. K. (2002). Metallurgical slag as a component in blended cement. Construction and Building Materials, 16(8), 489–494.
Rodriguez, A., Manso, J. M., Aragón, A., & Gonzalez, J. J. (2009). Strength and workability of masonry mortars manufactured with ladle furnace slag. Resources, Conservation and Recycling, 53(11), 645–651.
San-Jose, J. T., Vegas, I., Arribas, I., & Marcos, I. (2014). The performance of steel-making slag concretes in the hardened state. Materials and Design, 60, 612–619.
Saravanan, J., & Suganya, N. (2015). Mechanical properties of concrete using steel slag aggregate. International Journal of Engineering Inventions, 4(9), 07–16.
Shi, C. (2002). Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research, 32(3), 459–462.
Shi, C. (2004). Steel slag—Its production, processing, characteristics, and cementitious properties. Journal of Materials in Civil Engineering, 16(3), 230–236.
Shih, P. H., Wu, Z. Z., & Chiang, H. L. (2004). Characteristics of bricks made from waste steel slag. Waste Management, 24(10), 1043–1047.
Shuguang, H., Yongjia, H., Linnu, L., & Qingjun, D. (2006). Effect of fine steel slag powder on the early hydration process of Portland cement. Journal of Wuhan University of Technology-Materials Science Edition, 21(1), 147–149.
Sorlini, S., Sanzeni, A., & Rondi, L. (2012). Reuse of steel slag in bituminous paving mixtures. Journal of Hazardous Materials, 209–210, 84–91.
Takahashi, T., & Yabuta, K. (2002). New applications for iron and steelmaking slag. NKK Technical Review, 87, 38–44.
Tarawneh, S. A., Gharaibeh, E.S., Saraireh, F.M. (2014). Effect of using steel slag aggregate on mechanical properties of concrete. American Journal of Applied Sciences, 11(5), 700–706.
Tsakiridis, P. E., Papadimitriou, G. D., Tsivilis, S., & Koroneos, C. (2008). Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials, 152(2), 805–811.
Tüfekçi, M., Demirbaş, A., & Genç, H. (1997). Evaluation of steel furnace slags as cement additives. Cement and Concrete Research, 27(11), 1713–1717.
Vardaka, G., Kiriakos, T., Christos, L., & Stamatis, T. (2014). Use of steel slag as coarse aggregate for the production of pervious concrete. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(1), 30–40.
Vasanthi, P. (2014). Flexural behavior of reinforced concrete slabs using steel slag as coarse aggregate replacement. IJRET: International Journal of Research in Engineering and Technology, 03(9), 141–146.
Wang, C. L., Qi, Y. M., & He, J. Y. (2008). Experimental study on steel slag and slag replacing sand in concrete. In Proceedings of a 2008 International Workshop on Modelling, Simulation and Optimization. IEEE computer Society, Hong Kong, China.
Wang, G., Wang, Y., & Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria. Journal of Hazardous Materials, 184(1–3), 555–560.
Wang, Q., & Yan, P. (2010). Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 24(7), 1134–1140.
Wang, Q., Yang, J., & Yan, P. (2013). Cementitious properties of super-fine steel slag. Powder Technology, 245, 35–39.
Wang, Q., Yan, P., Yang, J., Zhang, B. (2013). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47(1), 1414–1420.
Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580–2585.
Xue, Y., Wu, S., Hou, H., & Zha, J. (2006). Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. Journal of Hazardous Materials, 138(2), 261–268.
Xuequan, W., Hong, Z., Xinkai, H., & Husen, L. (1999). Study on steel slag and fly ash composite Portland cement. Cement and Concrete Research, 29(7), 1103–1106.
Yang, J. W., Wang, Q., Yan, P. Y., & Zhang, B. (2013). Influence of steel slag on the workability of concrete. Key Engineering Materials, 539, 235–238.
Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An overview of utilization of steel slag. Procedia Environmental Sciences, 16, 791–801.
Yüksel, İ., & Özkan, Ö. (2009). Physical and mechanical properties of composite cements. ZKG International, 62(12), 54–63.
Yüksel, İ., Siddique, R., Özkan, Ö., & Khatib, J. M. (2009). Effect of GGBFS and GSS on the properties of mortar. In M. C. Limbachiya & H. Y. Kew (Eds.), Proceedings of international conference on excellence in concrete construction through innovation (pp. 445–451). London: CRC Press.
Zhang, T. S., Liu, F. T., Liu, S. Q., Zhou, Z. H., & Cheng, X. (2008). Factors influencing the properties of steel slag composite cement. Advances in Cement Research, 20(4), 145–150.
Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014, 1–8.