A review of shape memory alloy research, applications and opportunities

Materials & Design - Tập 56 - Trang 1078-1113 - 2014
Jaronie Mohd Jani1,2, Martin Leary2, Aleksandar Subic2, Mark Gibson3
1Institute of Product Design and Manufacturing, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
2School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, 3083, Australia
3CSIRO Process Science & Engineering, Private Bag 33, Clayton South MDC, Victoria 3169, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borroni-Bird CE. Smarter vehicles. Smart structures and materials 1997: industrial and commercial applications of smart structures technologies. San Diego, CA; 1997.

Butera F, Coda A, Vergani G. Shape memory actuators for automotive applications. In: Nanotec IT newsletter. Roma: AIRI/nanotec IT; 2007. p. 12–6.

GM. Chevrolet Debuts Lightweight ‘Smart Material’ on corvette. General Motors News; 2013.

Ölander, 1932, An electrochemical investigation of solid cadmium-gold alloys, Am Chem Soc, 54, 3819, 10.1021/ja01349a004

Vernon LB, Vernon HM. Process of manufacturing articles of thermoplastic synthetic resins. In: US Patent 2234993; 1941.

Buehler, 1963, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, Appl Phys, 34, 1475, 10.1063/1.1729603

Kauffman, 1997, The story of Nitinol: the serendipitous discovery of the memory metal and its applications, Chem Educator, 2, 1, 10.1007/s000897970155a

Wu MH, Schetky LM. Industrial applications for shape memory alloys. In: International conference on shape memory and superelastic technologies. Pacific Grove, California, USA; 2000. p. 171–82.

Zider RB, Krumme JF. Eyeglass frame including shape-memory elements. In: US Patents 4772112. Menlo Park, California, USA: CVI/Beta Ventures, Inc.; 1988.

Hautcoeur A, Eberthardt A. Eyeglass frame with very high recoverable deformability. In: US Patents 5640217. Fergaflex, Inc., Montreal, Canada; 1997.

Furuya, 1996, Design and material evaluation of shape memory composites, Intell Mater Syst Struct, 7, 321, 10.1177/1045389X9600700313

Leo DJ, Weddle C, Naganathan G, Buckley SJ. Vehicular applications of smart material systems. 1998:106–16.

Stoeckel, 1990, Shape memory actuators for automotive applications, Mater Des, 11, 302, 10.1016/0261-3069(90)90013-A

Bil, 2013, Wing morphing control with shape memory alloy actuators, J Intell Mater Syst Struct, 24, 879, 10.1177/1045389X12471866

Hartl, 2007, Aerospace applications of shape memory alloys, Proc Inst Mech Eng, Part G: J Aerospace Eng., 221, 535, 10.1243/09544100JAERO211

Humbeeck, 1999, Non-medical applications of shape memory alloys, Mater Sci Eng, A, 134, 10.1016/S0921-5093(99)00293-2

McDonald, 1991, Shape memory alloy applications in space systems, Mater Des, 12, 29, 10.1016/0261-3069(91)90089-M

Sun, 2012, Stimulus-responsive shape memory materials: a review, Mater Des, 33, 577, 10.1016/j.matdes.2011.04.065

Kohl, 2010

Kahny, 1998, The TiNi shape-memory alloy and its applications for MEMS, Micromech Microeng, 8, 213, 10.1088/0960-1317/8/3/007

Fujita, 1998, Micro actuators and their applications, Microelectron J, 29, 637, 10.1016/S0026-2692(98)00027-5

Kheirikhah, 2011, A review of shape memory alloy actuators in robotics, 206

Sreekumar, 2007, Critical review of current trends in shape memory alloy actuators for intelligent robots, Ind Rob.: Int J, 34, 285, 10.1108/01439910710749609

Furuya, 1991, Shape memory actuators for robotic applications, Mater Des, 12, 21, 10.1016/0261-3069(91)90088-L

Petrini L, Migliavacca F. Biomedical applications of shape memory alloys. J Metall 2011;2011.

Song, 2010, History and current situation of shape memory alloys devices for minimally invasive surgery, Open Med Dev J, 2, 24, 10.2174/1875181401002020024

Morgan, 2004, Medical shape memory alloy applications – the market and its products, Mater Sci Eng, A, 378, 16, 10.1016/j.msea.2003.10.326

Machado, 2003, Medical applications of shape memory alloys, Braz J Med Biol Res, 36, 683, 10.1590/S0100-879X2003000600001

Mantovani, 2000, Shape memory alloys: properties and biomedical applications, JOM, 52, 36, 10.1007/s11837-000-0082-4

Duerig, 1999, An overview of nitinol medical applications, Mater Sci Eng, A, 273–275, 149, 10.1016/S0921-5093(99)00294-4

Langenhove, 2004, Smart clothing: a new life, Int J Clothing Sci Technol, 16, 63, 10.1108/09556220410520360

Wilkes, 2000, The fatigue behavior of shape-memory alloys, JOM, 52, 45, 10.1007/s11837-000-0083-3

Cederström, 1995, Relationship between shape memory material properties and applications, J Phys IV France, 05, 10.1051/jp4:1995251

Hodgson, 1990, Shape memory alloys, ASM Handbook: ASM International, 897

Huang, 2002, On the selection of shape memory alloys for actuators, Mater Des, 23, 11, 10.1016/S0261-3069(01)00039-5

Sun, 2009, Nature of the multistage transformation in shape memory alloys upon heating, Met Sci Heat Treat, 51, 573, 10.1007/s11041-010-9213-x

Mihálcz, 2001, Fundamental characteristics and design method for nickel-titanium shape memory alloy, Periodica Polytechnica Ser Mech Eng, 45, 75

Lagoudas, 2010

Duerig, 1994

Huang, 2000, Training two-way shape memory alloy by reheat treatment, Mater Sci Lett, 19, 1549, 10.1023/A:1006721022185

Perkins J, Hodgson D. The two-way shape memory effect. Butterworth-Heinemann, Engineering Aspects of Shape, Memory Alloys(UK), 1990; 1990. p. 195–206.

Schroeder, 1977, The two-way shape memory effect and other “training” phenomena in Cu–Zn single crystals, Scr Metall, 11, 225, 10.1016/0036-9748(77)90058-8

Ma, 2010, High temperature shape memory alloys, Int Mater Rev, 55, 257, 10.1179/095066010X12646898728363

Stöckel D. The shape memory effect: phenomenon, alloys, applications. In: Shape memory alloys for power systems (EPRI); 1995. p. 1–13.

Huang W. Two-way behaviour of a nitinol torsion bar. Smart structures and materials 1999: 3–4 March, 1999, Newport Beach, California Smart materials technologies, vol. 3675. 1999. p. 284.

Otsuka, 1998

Perkins, 1990

Stalmans, 1991, Training and the 2 way memory effect in copper based shape memory alloys, J Phys IV, 1, 403

Funakubo H, Kennedy JB. Shape memory alloys. In: Gordon and breach, xii+ 275, 15×22cm, illustrated; 1987.

Brailovski V, Prokoshkin S, Terriault P, Trochu F. Shape memory alloys: fundamentals, modeling and applications: Universtié du Québec. École de Technologie Supérieure; 2003.

Delaey, 2006

Otsuka, 1998, Mechanism of shape memory effect and superelasticity, 27

Buehler, 1968, A summary of recent research on the nitinol alloys and their potential application in ocean engineering, Ocean Eng, 1, 105, 10.1016/0029-8018(68)90019-X

Tadaki, 1988, Shape memory alloys, Annu Rev Mater Sci, 18, 25, 10.1146/annurev.ms.18.080188.000325

Ren, 1997, Origin of rubber-like behaviour in metal alloys, Nature, 389, 579, 10.1038/39277

Otsuka, 2001, Mechanism of martensite aging effects and new aspects, Mater Sci Eng, A, 312, 207, 10.1016/S0921-5093(00)01877-3

Dynalloy Inc., Technical characteristics of Flexinol actuator wires. In: Dynalloy Inc. U, editor. Costa Mesa (CA); 2007. p. 12.

Liu, 2010, Some factors affecting the transformation hysteresis in shape memory alloys, 361

Sreekumar, 2009, Application of trained NiTi SMA actuators in a spatial compliant mechanism: experimental investigations, Mater Des, 30, 3020, 10.1016/j.matdes.2008.12.017

Mertmann, 2008, Design and application of shape memory actuators, Eur Phys J: Spec Top, 158, 221

Vaidyanathan, 2000

Greninger, 1938, Strain Transformation in metastable beta copper–zinc and beta copper–Ti alloys, AIME TRANS, 128, 337

Kurdjumov, 1949, First reports of the thermoelastic behaviour of the martensitic phase of Au–Cd alloys, Doklady Akademii Nauk SSSR, 66, 211

Chang, 1951, Behavior of the elastic properties of AuCd, Trans Met Soc AIME, 191, 47

Abrahamsson P, Bjiimemo R. The need for product design tools in shape memory technology. In: 3rd IUMRS international conference on advanced materials. Sunshine City, Ikebukuro, Tokyo, Japan; 1994. p. 1171–4.

Strittmatter, 2011, Long-time stability of Ni–Ti-shape memory alloys for automotive safety systems, J Mater Eng Perform, 20, 506, 10.1007/s11665-011-9848-9

Butera, 2008, Shape memory actuators for automotive applications, Adv Mater Processes, 166, 37

Kumar, 2008, Introduction to shape memory alloys, 1

Johnson AD. State-of-the-art of shape memory actuators. In: 6th international conference on new actuators. Bremen, Germany; 1998.

Baz, 1990, Active vibration control of flexible beams using shape memory actuators, J Sound Vib, 140, 437, 10.1016/0022-460X(90)90760-W

Duerig, 1990, Actuator and work production devices, 181

Hirose, 1988, Development of shape-memory alloy actuators. Performance assessment and introduction of a new composing approach, Adv Rob, 3, 3, 10.1163/156855389X00145

Karhu, 2010, Long-term behaviour of binary Ti–49.7 Ni (at.%) SMA actuators – the fatigue lives and evolution of strains on thermal cycling, Smart Mater Struct, 19, 115019, 10.1088/0964-1726/19/11/115019

Choon, 2007, Phase transformation temperatures for shape memory alloy wire, ENFORMATIKA, 19, 304

Ren, 2005, Meshfree modelling and characterisation of thermomechanical behaviour of NiTi alloys, Eng Anal Boundary Elem, 29, 29, 10.1016/j.enganabound.2004.09.004

Wada, 2005, Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions, Smart Mater Struct, 14, S273, 10.1088/0964-1726/14/5/016

Wang, 2004, Characteristics of two-way shape memory TiNi springs driven by electrical current, Mater Des, 25, 699, 10.1016/j.matdes.2004.02.022

Wang, 2003, Design of TiNi alloy two-way shape memory coil extension spring, Mater Sci Eng: A., 345, 10.1016/S0921-5093(02)00474-4

McWilliams A. Smart materials and their applications: technologies and global markets. BCC Research Advanced Materials Report; 2011. p. 161.

Welp, 2004, Knowledge and method base for shape memory alloys, Materialwiss Werkstofftech, 35, 294, 10.1002/mawe.200400745

Zhang, 1996, Development of Ni-Ti based shape memory alloys for actuation and control, 239

Abrahamsson, 1997, Demands on shape memory alloys from the application designer’s point of view, J Phys IV France, 07, 10.1051/jp4:19975106

Langbein, 2012, Adaptive resetting of SMA actuators, J Intell Mater Syst Struct, 23, 127, 10.1177/1045389X11431741

Reynaerts, 1998, Design aspect of shape memory actuators, Mechatronics, 8, 635, 10.1016/S0957-4158(98)00023-3

Leary, 2010, Lagging for control of shape memory alloy actuator response time, Mater Des, 31, 2124, 10.1016/j.matdes.2009.10.010

Winzek, 2004, Recent developments in shape memory thin film technology, Mater Sci Eng: A., 378, 40, 10.1016/j.msea.2003.09.105

Ryhänen, 1998, In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness, Biomed Mater Res, 41, 481, 10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L

Richman, 1995, Cavitation erosion of NiTi explosively welded to steel, Wear, 181

Singh, 1995, Dry sliding wear mechanisms in a Ti50Ni47Fe3 intermetallic alloy, Wear, 181–183, 302, 10.1016/0043-1648(95)90037-3

Clayton, 1993, Tribological behavior of a titanium-nickel alloy, Wear, 162

Lederlé, 2002

Hunter, 1991, A comparative analysis of actuator technologies for robotics, Rob Rev, 2

Tadesse Y. Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids; 2013. p. 868709–12.

Angioni, 2011, Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review, Smart Mater Struct, 20, 013001, 10.1088/0964-1726/20/1/013001

Smith, 2011, Working principle of bio-inspired shape memory alloy composite actuators, Smart Mater Struct, 20, 012001, 10.1088/0964-1726/20/1/012001

Godard OJ, Lagoudas MZ, Lagoudas DC. Design of space systems using shape memory alloys. In: Smart structures and materials: international society for optics and photonics; 2003. p. 545–58.

Saadat, 2002, An overview of vibration and seismic applications of NiTi shape memory alloy, Smart Mater Struct, 11, 218, 10.1088/0964-1726/11/2/305

Waram, 1993

Langbein, 2009, Development of standardised and integrated shape memory components in “one-module”-design, 1

Ashby, 2011

Qiu, 2001, High-speed actuation of shape memory alloy, Smart Mater MEMS: Int Soc Opt Photonics, 188, 10.1117/12.420858

Featherstone, 2006, Improving the speed of shape memory alloy actuators by faster electrical heating, 67

Chee Siong L, Yokoi H, Arai T. New shape memory alloy actuator: design and application in the prosthetic hand. in: 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005). Shanghai, China; 2005. p. 6900–3.

An, 2008, A note on size effect in actuating NiTi shape memory alloys by electrical current, Mater Des, 29, 1432, 10.1016/j.matdes.2007.09.001

Tadesse, 2010, Tailoring the response time of shape memory alloy wires through active cooling and pre-stress, J Intell Mater Syst Struct, 21, 19, 10.1177/1045389X09352814

Gorbet, 2009, Mechanism of bandwidth improvement in passively cooled SMA position actuators, Smart Mater Struct, 18, 095013, 10.1088/0964-1726/18/9/095013

Hisaaki, 1990, Basic research on shape memory alloy heat engine (output power characteristics and problems in development), JSME Int J, 33-I, 263

Howe RD, Kontarinis DA, Peine WJ. Shape memory alloy actuator controller design for tactile displays. In: Proceedings of the 34th IEEE Conference on Decision and Control, 1995, vol. 4. 1995. p. 3540–4.

Mascaro SA, Asada HH. Wet shape memory alloy actuators for active vasculated robotic flesh. In: 2003 Proceedings ICRA ‘03 IEEE International Conference on Robotics and Automation, vol. 1. 2003. p. 282–7.

Wellman PS, Peine WJ, Favalora G, Howe RD. Mechanical design and control of a high-bandwidth shape memory alloy tactile display. In: 1997 International symposium on experimental robotics. Barcelona, Spain; 1997.

Bergamasco M, Salsedo F, Dario P. A linear SMA motor as direct-drive robotic actuator. In: 1989 Proceedings, 1989 IEEE International Conference on Robotics and Automation, vol. 1. 1989. p. 618–23.

Romano, 2009, Modeling, control and experimental validation of a novel actuator based on shape memory alloys, Mechatronics, 19, 1169, 10.1016/j.mechatronics.2009.03.007

Selden, 2006, Segmented shape memory alloy actuators using hysteresis loop control, Smart Mater Struct, 15, 642, 10.1088/0964-1726/15/2/048

Brian, 2006, Segmented shape memory alloy actuators using hysteresis loop control, Smart Mater Struct, 15, 642, 10.1088/0964-1726/15/2/048

Luo, 2000, A shape memory alloy actuator using Peltier modules and R-phase transition, J Intell Mater Syst Struct, 11, 503, 10.1106/92YH-9YU9-HVW4-RVKT

Bhattacharyya, 1995, On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment, Smart Mater Struct, 4, 252, 10.1088/0964-1726/4/4/005

Shahin, 1994, Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules, J Intell Mater Syst Struct, 5, 95, 10.1177/1045389X9400500111

Russell RA, Gorbet RB. Improving the response of SMA actuators. In: 1995 Proceedings, 1995 IEEE International Conference on Robotics and Automation, vol. 3. 1995. p. 2299–304.

Chee Siong L, Yokoi H, Arai T. Improving heat sinking in ambient environment for the shape memory alloy (SMA). In: 2005 (IROS 2005) 2005 IEEE/RSJ international conference on intelligent robots and systems; 2005. p. 3560–5.

Huang, 2012, Optimisation of Ni-Ti shape memory alloy response time by transient heat transfer analysis, Mater Des, 35, 655, 10.1016/j.matdes.2011.09.043

Ditman, 1996, The design of extended bandwidth shape memory alloy actuators, J Intell Mater Syst Struct, 7, 635, 10.1177/1045389X9600700603

Huang, 2013, The critical and crossover radii on transient heating, Appl Therm Eng, 60, 325

Jackson CM, Wagner HM, Wasilewski RJ. 55-Nitinol-The Alloy with a Memory: it’s physical metallurgy properties, and applications. NASA SP-5110. NASA Special, Publication; 1972. p. 5110.

Jun, 2007, Development of a fuel-powered shape memory alloy actuator system: II. Fabrication and testing, Smart Mater Struct, 16, S95, 10.1088/0964-1726/16/1/S10

Thrasher, 1994, Efficiency analysis of shape memory alloy actuators, Smart Mater Struct, 3, 226, 10.1088/0964-1726/3/2/019

He, 2010, Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading, Smart Mater Struct, 19, 115014, 10.1088/0964-1726/19/11/115014

Erbstoeszer, 2000, Stabilization of the shape memory effect in NiTi: an experimental investigation, Scripta Mater, 42, 1145, 10.1016/S1359-6462(00)00350-X

Tang, 1993, Analysis of the influence of cycling on TiNi shape memory alloy properties, Mater Des, 14, 103, 10.1016/0261-3069(93)90003-E

Iadicola, 2002, An experimental setup for measuring unstable thermo-mechanical behavior of shape memory alloy wire, J Intell Mater Syst Struct, 13, 157, 10.1177/104538902761402558

Carreras, 2011, Fatigue laboratory tests toward the design of SMA portico-braces, Smart Struct Syst, 7, 41, 10.12989/sss.2011.7.1.041

Torra, 2010, Metastable effects on martensitic transformation in SMA Part 8 – temperature effects on cycling, J Therm Anal Calorim, 102, 671, 10.1007/s10973-009-0613-3

Carreras, 2008, Metastable effects on martensitic transformation in SMA part 5 – Fatigue-life and detailed hysteresis behavior in NiTi and Cu-based alloys, J Therm Anal Calorim, 91, 575, 10.1007/s10973-007-8600-z

Isalgue, 2008, Metastable effects on martensitic transformation in SMA part 6 – The Clasius – Clapeyron relationship, J Therm Anal Calorim, 91, 991, 10.1007/s10973-007-8604-8

Auguet, 2008, Metastable effects on martensitic transformation in SMA Part 7 – Aging problems in NiTi, J Therm Anal Calorim, 92, 63, 10.1007/s10973-007-8738-8

Auguet, 2007, Metastable effects on martensitic transformation in SMA Part 3 – Tentative temperature effects in a NiTi alloy, J Therm Anal Calorim, 89, 537, 10.1007/s10973-006-7625-z

Sepulveda, 2007, Metastable effects on martensitic transformation in SMA Part 2 – the grain growth effects in Cu–Al–Be alloy, J Therm Anal Calorim, 89, 101, 10.1007/s10973-005-7480-3

Auguet, 2007, Metastable effects on martensitic transformation in SMA Part 4 – theromomechanical properties of CuAlBe and NiTi observations for dampers in family houses, J Therm Anal Calorim, 88, 537, 10.1007/s10973-006-8034-z

Torra, 2005, Metastable effects on martensitic transformation in SMA Part 1 – recoverable effects by the action of thermodynamic forces in parent phase, J Therm Anal Calorim, 81, 131, 10.1007/s10973-005-0756-9

Barnes B, Brei D, Luntz J, LaVigna C. Development of an antagonistic SMA actuator for instar rifle stabilization system. In: Aerospace Division ASoME, editor. International Mechanical Engineering Congress and Exposition 2005 (IMECE 2005). Orlando, FL, USA: American Society of Mechanical Engineers; 2007. p. 333–46.

Fumagalli, 2009, SmartFlex® NiTi wires for shape memory actuators, J Mater Eng Perform, 18, 691, 10.1007/s11665-009-9407-9

Pieczyska, 2010, Torsional deformation and fatigue properties of TiNi SMA thin strip for rotary driving element, J Solid Mech Mater Eng, 4, 1306, 10.1299/jmmp.4.1306

Tobushi, 2011, Mechanical properties of cast shape memory alloy for brain spatula, Trans Tech Publ, 213

Kitamura, 2010, Fatigue properties of cast TiNi shape-memory alloy brain spatula, J Solid Mech Mater Eng, 4, 796, 10.1299/jmmp.4.796

Tamura, 1995, Fatigue properties of Ti–Ni shape memory alloy springs, J Phys IV, 5

Michael, 1995, The effect of stress ageing on the properties of shape memory alloys, J Phys IV France, 05, 10.1051/jp4:1995253

Thoma PE, Kao M-Y, Schmitz DM. Extended life SMA actuator. US Patents 5419788. USA: Johson Service Co., Milwaukee, USA; 1995. p. 5.

Kuribayashi, 1991, Improvement of the response of an SMA actuator using a temperature sensor, The Int J Rob Res, 10, 13, 10.1177/027836499101000102

Ikuta K, Tsukamoto M, Hirose S. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: 1988 IEEE international conference on robotics and automation; 1988. p. 427–30.

Schiedeck, 2011, Design of a robust control strategy for the heating power of shape memory alloy actuators at full contraction based on electric resistance feedback, Smart Mater Struct, 20, 045002, 10.1088/0964-1726/20/4/045002

Meier, 2011, Smart control systems for smart materials, J Mater Eng Perform, 20, 559, 10.1007/s11665-011-9877-4

Bergamasco, 1990, Shape memory alloy microactuators, Sens Actuators, A, 21, 253, 10.1016/0924-4247(90)85049-A

Miyazaki, 1999, Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires, Mater Sci Eng, A, 273–275, 658, 10.1016/S0921-5093(99)00344-5

Nam, 1990, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Mater Trans, 31, 959, 10.2320/matertrans1989.31.959

Jee, 2008, New method for improving properties of SMA coil springs, Eur Phys J Spec Top, 158, 261, 10.1140/epjst/e2008-00685-y

Porter, 2001, Fatigue and fracture behavior of nickel–titanium shape-memory alloy reinforced aluminum composites, Mater Sci Eng, A, 314, 186, 10.1016/S0921-5093(00)01915-8

Fernandes, 2013, Thermomechanical Treatments for Ni–Ti Alloys

Lagoudas, 2009, Thermomechanical fatigue of shape memory alloys, Smart Mater Struct, 18, 085021, 10.1088/0964-1726/18/8/085021

Wagner, 2008, Healing of fatigue damage in NiTi shape memory alloys, J Phys D Appl Phys, 41, 185408, 10.1088/0022-3727/41/18/185408

Hornbogen, 2004, Review Thermo-mechanical fatigue of shape memory alloys, J Mater Sci, 39, 385, 10.1023/B:JMSC.0000011492.88523.d3

Firstov, 2006, High temperature shape memory alloys problems and prospects, J Intell Mater Syst Struct, 17, 1041, 10.1177/1045389X06063922

Beyer, 1994, Recent developments in high temperature shape memory alloys

Kim, 2004, Mechanical properties and shape memory behavior of Ti–Nb alloys, Mater Trans, 45, 2443, 10.2320/matertrans.45.2443

Noebe R, Gaydosh D, Padula Ii S, Garg A, Biles T, Nathal M. Properties and potential of two (Ni, Pt)Ti alloys for use as high-temperature actuator materials. 2005. p. 364–75.

Lelatko, 2001, High temperature Cu–Al–Nb – based shape memory alloys, J Phys IV France, 11, 10.1051/jp4:2001881

Tellinen J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K. Basic properties of magnetic shape memory actuators. In: Proc of 8th int conf on actuator. Bremen, Germany; 2002. p. 566–9.

Czimmek P. Characterization of magnetic shape memory material. Siemen VDO Automotive Engineering Report; 2004.

Henry CP. Dynamic actuation properties of Ni–Mn–Ga ferromagnetic shape memory alloys. In: Massachusetts Institute of Technology. Massachusetts Institute of Technology; 2002.

Lu, 2009, 95

Tsuchiya, 2004, Modification of Ni–Mn–Ga ferromagnetic shape memory alloy by addition of rare earth elements, Mater Sci Eng, A, 378, 370, 10.1016/j.msea.2003.11.076

Heczko, 2003, Temperature dependence and temperature limits of magnetic shape memory effect, J Appl Phys, 94, 7139, 10.1063/1.1626800

Johnson AD. Shape memory alloy thin film, method of fabrication, and articles of manufacture. US Patents 7540899B1. TiNi Alloy Company; 2009.

Fu, 2004, TiNi-based thin films in MEMS applications: a review, Sens Actuators, A, 112, 395, 10.1016/j.sna.2004.02.019

Miyazaki, 1999, Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Mater Sci Eng, A, 273–275, 106, 10.1016/S0921-5093(99)00292-0

Krulevitch, 1996, Thin film shape memory alloy microactuators, J f Microelectromech Syst, 5, 270, 10.1109/84.546407

Gabriel KJ, Mehregany M, Walker JA. Thin film shape memory alloy and method for producing. US Patents 4864824. AT&T Bell Laboratories, Murray Hill, NJ, USA; 1989.

Voit, 2010, High-strain shape-memory polymers, Adv Funct Mater, 20, 162, 10.1002/adfm.200901409

Ochonski, 2010, Application of shape memory materials in fluid sealing technology, Ind Lubr Tribology, 62, 99, 10.1108/00368791011025647

Liu, 2007, Review of progress in shape-memory polymers, J Mater Chem, 17, 1543, 10.1039/b615954k

Witold, 2007, Medical applications of shape memory polymers, Biomed Mater, 2, S23, 10.1088/1748-6041/2/1/S04

Lendlein, 2002, Shape-memory polymers, Angew Chem Int Ed, 41, 2034, 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

Hu, 2012, Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications, Prog Polym Sci, 37, 1720, 10.1016/j.progpolymsci.2012.06.001

Xie, 2010, Tunable polymer multi-shape memory effect, Nature, 464, 267, 10.1038/nature08863

Bellin, 2006, Polymeric triple-shape materials, Proc Nat Acad Sci, 103, 18043, 10.1073/pnas.0608586103

Huang, 2012, Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization, J Polym Res, 19, 1, 10.1007/s10965-012-9952-z

Wang, 2012, Cooling-/water-responsive shape memory hybrids, Compos Sci Technol, 72, 1178, 10.1016/j.compscitech.2012.03.027

Liu, 2009, Review of electro-active shape-memory polymer composite, Compos Sci Technol, 69, 2064, 10.1016/j.compscitech.2008.08.016

Mohr, 2006, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers, Proc Nat Acad Sci USA, 103, 3540, 10.1073/pnas.0600079103

Lendlein, 2005, Light-induced shape-memory polymers, Nature, 434, 879, 10.1038/nature03496

Lv, 2008, Shape-memory polymer in response to solution, Adv Eng Mater, 10, 592, 10.1002/adem.200800002

Leng, 2008, Comment on “Water-driven programable polyurethane shape memory polymer: Demonstration and mechanism” [Appl. Phys. Lett. 86, 114105 (2005)], Appl Phys Lett, 92, 10.1063/1.2936288

Huang, 2005, Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism, Appl Phys Lett, 86, 10.1063/1.1880448

Sun, 2013, Polymeric shape memory materials and actuators, Liq Cryst, 1

Ratna, 2008, Recent advances in shape memory polymers and composites: a review, J Mater Sci, 43, 254, 10.1007/s10853-007-2176-7

Behl, 2007, Shape-memory polymers, Mater Today, 10, 20, 10.1016/S1369-7021(07)70047-0

Hu, 2007

Wang, 2012, Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function, Smart Mater Struct, 21, 115010, 10.1088/0964-1726/21/11/115010

Campbell D, Lake MS, Scherbarth MR, Nelson E, Six RW. Elastic memory composite material: an enabling technology for future furlable space structures. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. Austin, TX, USA: AIAA; 2005. p. 6735–43.

Baer, 2007, Shape-memory behavior of thermally stimulated polyurethane for medical applications, J Appl Polym Sci, 103, 3882, 10.1002/app.25567

Gall, 2005, Thermomechanics of the shape memory effect in polymers for biomedical applications, J Biomed Mater Res, Part A, 73A, 339, 10.1002/jbm.a.30296

Hayashi, 1993, Properties and applications of polyurethane-series shape memory polymer, 90

Duerig, 1990, Applications of shape memory, 679

Wu MH, Schetky LM. Industrial applications for shape memory alloys. In: International conference on shape memory and superelastic technologies, 1st ed. Pacific Grove, California, USA; 2000. p. 171–82.

Stoeckel, 1992, Use of Ni–Ti shape memory alloys for thermal sensor-actuators, 382

Stoeckel D, Tinschert F. Temperature compensation with thermovariable rate springs in automatic transmissions. SAE technical paper series: SAE; 1991.

Johnson, 2004, The changing automotive environment: high-temperature electronics, IEEE Trans Electron Pack Manuf, 27, 164, 10.1109/TEPM.2004.843109

Neugebauer R, Bucht A, Pagel K, Jung J. Numerical simulation of the activation behavior of thermal shape memory alloys. 2010:76450J-J.

Luchetti, 2009, Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator, J Mater Eng Perform, 18, 717, 10.1007/s11665-009-9487-6

Weber, 2010, Smart materials have a bright future, Adv Assembly Mater Trans Appl

Browne AL, Alexander PW, Mankame N, Usoro P, Johnson NL, Aase J, et al. SMA heat engines: advancing from a scientific curiosity to a practical reality. In: Smart materials, structures and NDT in Aerospace. Montreal, Quebec, Canada: CANSMART CINDE IZFP; 2011.

Gehm, 2007, Smart materials spur additional design possibilities, 46

Bellini, 2009, Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: a case study, IEEE Trans Industr Electron, 56, 2644, 10.1109/TIE.2009.2019773

Strittmatter, 2009, Long-time stability of shape memory actuators for pedestrian safety system, J Achiev Mater Manuf Eng, 34, 23

Williams, 2010, Control of an automotive shape memory alloy mirror actuator, Mechatronics, 20, 527, 10.1016/j.mechatronics.2010.04.002

Zychowicz R. Exterior view mirror for a motor vehicle. US Patents 5166832. Britax (GECO) SA; 1992. p. 5.

Leary, 2013, Design of shape memory alloy actuators for direct power by an automotive battery, Materials and Design, 43, 460, 10.1016/j.matdes.2012.07.002

Suzuki M. Rotatable door mirror for a motor vehicle. US Patents 4626085, G02B 7/18 ed. Kabushiki Kaisha Tokai Rika Denki Seisakusho, Aichi, Japan; 1986. p. 9.

Brugger, 2006, Ferromagnetic shape memory microscanner system for automotive applications, Int J Appl Electromagnet Mech, 23, 107, 10.3233/JAE-2006-714

Van Humbeeck, 1991, Shape memory alloys: materials in action, Endeavour, 15, 148, 10.1016/0160-9327(91)90119-V

Melton, 1999, General applications of shape memory alloys and smart materials, 220

Singh, 2002, Design of an improved shape memory alloy actuator for rotor blade tracking, 244

Baumbick RJ. Shape memory alloy actuator. In: US Patents 6151897. The USA as represented by the Administrator of NASA, Washington DC, USA; 2000. p. 7.

Cleveland MA. Apparatus and method for releaseably joining elements. In: US Patent 7367738B2. The Boeing Co.; 2008.

Carpenter B, Lyons J. EO-1 technology validation report. In: Lightweight flexible solar array experiment. NASA/GSFC Last updated: August; 2001. p. 8.

Huettl B, Willey C. Design and development of miniature mechanisms for small spacecraft. In: 14th AIAA/USU small satellite conference. North Logan, UT, USA: Utah State University Research Foundation; 2000. p. 1–14.

Long CFL, Vezain GAP. Single actuation pushing device driven by a material with form memory. In: US Patents 5829253: Societe Nationale Industrielle et Aerospatiale, Paris Cedex, France; 1998. p. 12.

Lortz BK, Tang A. Separation device using a shape memory alloy retainer. In: US Patents 5722709. Hughes Electronics, LA, California, USA; 1998.

Fujun, 2005, Application of shape memory alloy actuators in active shape control of inflatable space structures, 1

Roh, 2005, Finite element analysis of adaptive inflatable structures with SMA strip actuator, 460

Prahlad H, Chopra I. Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators. In: 8th Annual international symposium on smart structures and materials. International Society for Optics and Photonics; 2001. p. 46–59.

Birman, 1997, Review of mechanics of shape memory alloy structures, Appl Mech Rev, 50, 629, 10.1115/1.3101674

Landis, 1997, Dust on mars: materials adherence experiment results from mars pathfinder, 865

Kudva, 2004, Overview of the DARPA smart wing project, J Intell Mater Syst Struct, 15, 261, 10.1177/1045389X04042796

Pitt D, Dunne J, White E, Garcia E. SAMPSON smart inlet SMA powered adaptive lip design and static test. In: 42nd AIAA structures, structrual dynamics, and materials conference. Seattle, WA, USA; 2001. p. 1–11.

Mieloszyk, 2010, An adaptive wing for a small-aircraft application with a configuration of fibre Bragg grating sensors, Smart Mater Struct, 19, 085009, 10.1088/0964-1726/19/8/085009

Sofla, 2010, Shape morphing of aircraft wing: status and challenges, Mater Des, 31, 1284, 10.1016/j.matdes.2009.09.011

Icardi, 2009, Preliminary study of an adaptive wing with shape memory alloy torsion actuators, Mater Des, 30, 4200, 10.1016/j.matdes.2009.04.045

Strelec, 2003, Design and implementation of a shape memory alloy actuated reconfigurable airfoil, J Intell Mater Syst Struct, 14, 257, 10.1177/1045389X03034687

Oehler, 2012, Design optimization and uncertainty analysis of SMA morphing structures, Smart Mater Struct, 21, 094016, 10.1088/0964-1726/21/9/094016

Hartl, 2010, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Mater Struct, 19, 015020, 10.1088/0964-1726/19/1/015020

Hartl, 2010, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart, Mater Struct, 19, 015021, 10.1088/0964-1726/19/1/015021

Noebe RD, Quackenbush TR, II SAP. Benchtop demonstration of an adaptive chevron completed using a new high-temperature shape-memory alloy; 2005. p. 140–1.

Noebe RD, Draper SL, Nathal MV, Garg A. High work output Ni–Ti–Pt high temperature shape memory alloys and associated processing methods. In: US Patents 7501032B1. The United states of America, NASA Washington DC, USA; 2009.

Calkins, 2010, Shape memory alloy based morphing aerostructures, J Mech Des, 132, 111012, 10.1115/1.4001119

Caldwell, 2007, Heat transfer model for blade twist actuator system, J Thermophys Heat Transfer, 21, 352, 10.2514/1.23120

Jacot AD, Ruggeri RT, Clingman DJ. Shape memory alloy device and control method. In: US Patents 7037076B2. The Boeing Co.; 2006.

Kennedy DK, Straub FK, Schetky LM, Chaudhry ZA, Roznoy R. Development of an SMA actuator for in-flight rotor blade tracking. 2000:62–75.

Robert, 1997, Recent developments in smart structures with aeronautical applications, Smart Mater Struct, 6, R11, 10.1088/0964-1726/6/5/001

Testa C, Leone S, Ameduri S, Concilio A. Feasibility study on rotorcraft blade morphing in hovering. 2005:171–82.

Elzey, 2003, A bio-inspired high-authority actuator for shape morphing structures, 92

Huettl B, Willey CE. Design and development of miniature mechanisms for small spacecraft.

Johnson AD. Non-explosive separation device. In: US Patents 5119555; 1992.

Peffer, 2000, Development and transition of low-shock spacecraft release devices, vol. 4, 277

Johnson AD. Non-explosive separation device. In: US Patents 5119555: TiNI Alloy Co., California, USA; 1992. p. 14.

Willey CE, Huettl B, Hill SW. Design and development of a miniature mechanisms tool-kit for micro spacecraft. In: 35th Aerospace mechanisms symposium; 2001.

Lagoudas DC, Machado LG, Lagoudas M. Nonlinear vibration of a one-degree of freedom shape memory alloy oscillator: A numerical-experimental investigation. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. Austin, TX, USA; 2005. p. 1–18.

Ngo E, Northwang WD, Cole MW, Hubbard C, Hirsch G, Mohanchandra KP, et al. Fabrication of active thin films for vibration damping in MEMS devices for the next generation army munition systems. DTIC Document; 2004.

Williams KA, Chiu GT, Bernhard RJ. Controlled continuous tuning of an adaptively tunable vibration absorber incorporating shape memory alloys. 2000:564–75.

Sherwin Y, Ulmer DG. Method for vibration damping using superelastic alloys. In: US Patent 6796408B2. The Boeing Co.; 2004.

Grosskrueger DD, Carpenter BF, Easom BW, Draper JL. Apparatus and associated method for detuning from resonance a structure. In: US Patents 6024347. US006024347A ed: Lockheed Martin Corp., Bathesda, Md, USA; 2000. p. 14.

Renz R, Kramer J. Metallic damping body. In: US Patents 5687958. Mercedes-Benz AG, Germany; 1997. p. 6.

Knowles G, Bird RW. Telescopic wing system. In: US Patent 6834835B1. QorTek Inc.; 2004.

Manzo J, Garcia E, Wickenheiser A, Horner GC. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism. 2005:232–40.

Kutlucinar I. Aircraft with shape memory alloys for retractable landing gear. In: US Patent 6938416B1. Emergency Warning Systems Inc.; 2005.

Song G, Ma N. Shape memory alloy actuated adaptive exhaust nozzle for jet engine. In: US Patents 8245516. University of Houston; 2012.

Core RA. Dilating fan duct nozzle. In: US Patent 7716932B2. Spirit AeroSystems Inc.; 2010.

Shmilovich A, Yadlin Y, Smith DM, Clark RW. Integrated engine exhaust systems and methods for drag and thermal stress reduction. In: US Patent 7669785B2. Th Boeing Co.; 2010.

Mons CM. Actuating device, bypass air bleed system equipped therewith, and turbojet engine comprising these. In: US Patents 2009/0056307A1. SNECMA; 2008.

Wood JH. Shape changing structure in a jet engine nacelle nozzle and corresponding jet engine and operating method. In: EP Patent 1,817,489. The Boeing Co.; 2007.

Wood JH, Dunne JP. Morphing structure. In: US Patent 7340883B2. The Boeing Co.; 2008.

Larssen JV, Calkins FT. Deployable Flap Edge Fence. In: US Patents 2010/0219288A1. The Boeing Co.; 2010.

Mabe JH, Calkins FT, Bushnell GS, Bieniawski SR. Aircraft systems with shape memory alloy (SMA) actuators, and associated methods. In: US Patent 7878459B2. The Boeing Co.; 2011.

Widdle RD, Grimshaw MT, Crosson-Elturan KS, Mabe JH, Calkins FT, Gravatt LM, et al. High stiffness shape memory alloy actuated aerostructure. In: US Patent 2011/0030380A1. The Boeing Co.; 2009.

Mani, 2003, MEMS-based active skin for turbulent drag reduction, Smart Struct Mater, 2003, 9

Mohammad, 2002, Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates, Smart Mater Struct, 11, 297, 10.1088/0964-1726/11/2/313

Fujita H. Studies of micro actuators in Japan. In: IEEE international conference on robotic automation. Institute of Industrial Science, Tokyo University; 1989. p. 1559–64.

Kuribayashi, 1989, Millimeter size joint actuator using shape memory alloy, 139

Caldwell DG, Taylor PM. Artificial muscles as robotic actuators. In: IFAC Robot control conference (Syroc 88). Karlsruhe, Germany 1988. p. 401–6.

Kuribayashi, 1986, A new actuator of a joint mechanism using TiNi alloy wire, Int J Rob Res, 4, 47, 10.1177/027836498600400404

Honma, 1985, Micro robots and micro mechanisms using shape memory alloy to robotic actuators, Rob Syst, 2, 3

Tao, 2006, Bio-inspired actuating system for swimming using shape memory alloy composites, Int J Automat Comput, 3, 366, 10.1007/s11633-006-0366-4

Mohamed Ali, 2010, Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process, Sens Actuators, A, 163, 363, 10.1016/j.sna.2010.08.007

Tuna C, Solomon JH, Jones DL, Hartmann MJZ. Object shape recognition with artificial whiskers using tomographic reconstruction. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2012. p. 2537–40.

Stephen, 2013, Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints, Smart Mater Struct, 22, 014011, 10.1088/0964-1726/22/1/014011

Bunget G, Seelecke S. Actuator placement for a bio-inspired bone-joint system based on SMA; 2009. p. 72880L-L-12.

Colorado, 2012, Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators, Bioinspiration Biomimetics, 7, 036006, 10.1088/1748-3182/7/3/036006

Festo. BionicOpter – Inspired by dragonfly flight. Festo; 2013.

Andreasen GF. Method and system for orthodontic moving of teeth. In: US Patents 4037324. A61G 7/00 ed. USA: University of Iowa Research Foundation; 1977. p. 8.

Andreasen, 1971, An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics, J Am Dental Assoc, 82, 1373, 10.14219/jada.archive.1971.0209

Oh, 2010, A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue, Oral Sur Oral Med Oral Path Oral Radiol Endodontology, 109, 622, 10.1016/j.tripleo.2009.12.025

Dahlgren JM, Gelbart D. System for mechanical adjustment of medical implants. In: US Patent 2009/0076597A12009.

Pfeifer, 2013, Adaptable orthopedic shape memory implants, Procedia CIRP, 5, 253, 10.1016/j.procir.2013.01.050

Maynard RS. Distributed activator for a two-dimensional shape memory alloy. In: US Patents 59412491999.

Lim, 1996, Future of active catheters, Sens Actuators, A, 56, 113, 10.1016/0924-4247(96)01279-4

Dotter, 1983, Transluminal expandable nitinol coil stent grafting: preliminary report, Radiology, 147, 259, 10.1148/radiology.147.1.6828741

Terzo G. Taking the pulse of the stent market. in: Investment dealers’ digest 2006. p. 12.

Haga Y, Esashi M, Maeda S. Bending, torsional and extending active catheter assembled using electroplating. In: MEMS 2000 the thirteenth annual international conference on 2000 Micro electro mechanical systems; 2000. p. 181–6.

Haga Y, Tanahashi Y, Esashi M. Small diameter active catheter using shape memory alloy. In: The eleventh annual international, workshop on Micro Electro Mechanical Systems, 1998 MEMS 98 Proceedings; 1998. p. 419–24.

Tung, 2008, Laser-machined shape memory alloy sensors for position feedback in active catheters, Sens Actuators, A, 147, 83, 10.1016/j.sna.2008.03.024

Kim, 2009, Micro artificial muscle fiber using niti spring for soft robotics, 2228

Stirling, 2011, Applicability of shape memory alloy wire for an active, soft orthotic, J Mater Eng Perform, 20, 658, 10.1007/s11665-011-9858-7

Shiraishi Y, Yambe T, Saijo Y, Sato F, Tanaka A, Yoshizawa M, et al. Morphological approach for the functional improvement of an artificial myocardial assist device using shape memory alloy fibres. In: 29th annual international conference of the IEEE engineering in medicine and biology society, 2007 (EMBS 2007); 2007. p. 3974–7.

Yamada, 2013, Preliminary design of the mechanical circulation assist device for fontan circulation using shape memory alloy fibers, 119

Pelton, 2008, Fatigue and durability of Nitinol stents, J Mech Behav Biomed Mater, 1, 153, 10.1016/j.jmbbm.2007.08.001

Allie DE, Hebert CJ, Walker CM. Nitinol stent fractures in the SFA. In: Endovascular today 2004. p. 22–9.

Biesiekierski, 2012, A new look at biomedical Ti-based shape memory alloys, Acta Biomater, 8, 1661, 10.1016/j.actbio.2012.01.018

Miyazaki, 2006, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Mater Sci Eng, A, 438–440, 18, 10.1016/j.msea.2006.02.054

Bogue, 2009, Shape-memory materials: a review of technology and applications, Assembly Automation, 29, 214, 10.1108/01445150910972895

Dynalloy. Dynalloy Newsletters; 2007.

Dynalloy. Dynalloy Newsletters; 2006.

Khan, 2013, Multiple memory shape memory alloys, Adv Eng Mater, 15, 386, 10.1002/adem.201200246

Tang, 2012, The triple-shape memory effect in NiTi shape memory alloys, Smart Mater Struct, 21, 085022, 10.1088/0964-1726/21/8/085022

Aerospace T. Single crystal shape memory alloys; 2013.

Tanaka, 2010, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science, 327, 1488, 10.1126/science.1183169

Global C. New nickel manganese shape memory alloy developed. In: Success stories. CRDF Global; 2013.

Niskanen, 2013, Design and simulation of a Magnetic Shape Memory (MSM) alloy energy harvester, Adv Sci Technol, 78, 58, 10.4028/www.scientific.net/AST.78.58

Ullakko K, Sasaki K, Müllner P. Sensor device. In: US Patent 2013/0091954A1. Boise State University; 2013.

Ma, 2010, Expanding the repertoire of shape memory alloys, Science, 327, 1468, 10.1126/science.1186766

Raghavan, 2010, Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites, Compos B Eng, 41, 214, 10.1016/j.compositesb.2009.10.009

Furuya, 1993, Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite, JIM, Mater Trans, 34, 224, 10.2320/matertrans1989.34.224

Bidaux, 1996, Active stiffening of composite materials by embedded shape-memory-alloy fibres, 107

Ghosh, 2013, Design of multi-state and smart-bias components using Shape Memory Alloy and Shape Memory Polymer composites, Mater Des, 44, 164, 10.1016/j.matdes.2012.05.063

Fulvio, 2012, Multifunctional SMArt composite material for in situ NDT/SHM and de-icing, Smart Mater Struct, 21, 105010, 10.1088/0964-1726/21/10/105010

Qian, 2010, Seismic vibration control of civil structures using shape memory alloys: a review, 3377

Song, 2006, Applications of shape memory alloys in civil structures, Eng Struct, 28, 1266, 10.1016/j.engstruct.2005.12.010

Mirzaeifar, 2012, Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion, Int J Non-Linear Mech, 47, 118, 10.1016/j.ijnonlinmec.2012.01.007

Janke, 2005, Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas, Mat Struct, 38, 578

Song G, Patil D, Kocurek C, Bartos J. Applications of shape memory alloys in offshore oil and gas industry: a review. In: Proc earth and space 2010—engineering, science, construction, and operations in challenging environments (Honolulu, HI, USA, 14–17 March 2010); 2010. p. 366.

Maehara K, Chikaraishi T. Golf ball. In: US Patents 5913736A. Bridgestone Sports Co. Ltd., Tokyo, Japan; 1999.

Sahatjian RA. Sports racquet netting. In: US Patents 49095101990.

Krumme JF, Dickinson FC. Golf club head or face. In: US Patents 6277033B1. Pixl Golf Technologies Inc., Palo Alto, CA, USA; 2001.

Descamps, 1991, The application of shape-memory alloys to sculpture, JOM, 43, 10.1007/BF03220168

Van Humbeeck, 1997, Shape memory materials: state of the art and requirements for future applications, Le J de Phys IV, 7

Spaggiari, 2012, Optimum mechanical design of binary actuators based on shape memory alloys, 716

Breidert J, Welp E. Actuator development using a knowledge base. In: Proceedings of the 8th international conference on new actuators (ACTUATOR). Bremen, Germany 2002. p. 584–7.

Testing ASf, Materials. In: Annual book of ASTM standards. American Society for Testing and Materials; 1983.

Otsuka, 1999, Recent developments in the research of shape memory alloys, Intermetallics, 7, 511, 10.1016/S0966-9795(98)00070-3

Kirkby, 2008, Embedded shape-memory alloy wires for improved performance of self-healing polymers, Adv Funct Mater, 18, 2253, 10.1002/adfm.200701208

Murphy, 2010, The world of smart healable materials, Prog Polym Sci, 35, 223, 10.1016/j.progpolymsci.2009.10.006

Luo, 2013, Shape memory assisted self-healing coating, ACS Macro Letters, 2, 152, 10.1021/mz400017x

Morgan RK, Yaeger JR. Self-regulated actuator. In: US Patents 4524343, H01H 61/06 ed. Raychem Corporation, Menlo Park, California, USA; 1985. p. 7.

Hosoda Y, Kojima Y, Fujie M, Honma K, Iwamoto T, Nakano Y, et al. Actuator. In: US Patents 4586335, F03G 7/06 ed. Hitachi Ltd., Tokyo, Japan; 1986. p. 5.

Sampson R. Automatic closing activator. In: US Patent 47063301987.

Gabriel KJ, Trimmer WSN, Walker JA. Shape memory alloy actuator. In: US Patents 4700541. American Telephone and Telegraph Company, AT&T Bell Laboratories, Murray Hill, NJ, USA; 1987. p. 6.

Swenson SR. Shape memory bi-directional rotary actuator. In: US Patent 51272281992.

Komatsu K, Mori T, Takinami M. Contraction-extension mechanism type actuator. In: US Patents 5335498, Terumo Kabushiki Kaisha, Tokyo, Japan; 1994.

Mukherjee R, Christian TF. Actuation system for the control of multiple shape memory alloy elements. In: US Patents 5763979. The USA as represented by Secretary of Navy, Washington DC, USA; 1998. p. 7.

Foss Jr RL, Siebrecht WA. Translational actuator. In: US Patents 6006522. Lockheed Martin Corp., Bethesda, Md.; 1999.

Weems W. Constant force spring actuator. In: US Patent 6129181A2000.

Jacot AD, Julien GJ, Clingman DJ. Shape memory rotary actuator. In: US Patent 6065934. The Boeing Co., Seattle, Washington, USA; 2000. p. 22.

Williams PL. Stepper motor with shaped memory alloy rotary-driver. In: US Patents 6242841 B1: Eastman Kodak Co.; 2001.

Homma D. Shape memory alloy actuator and method of designing the same. In: US Patent 6746552B2. Toki Corporation Kabushiki Kaisha; 2004.

Biasiotto M, Butera F, Alacqua S. shape memory bistable actuator. In: US Patent 2005/0195064A1. CRF Societa Consortile per Azioni; 2005.

Gummin MA, Donakowski W, Gaines G. Shape memory alloy actuators. In: US Patents 7256518B22007.

Gummin MA, Donakowski W, Gaines GA. Shape memory alloy actuator. In: US Patents 7021055B22006.

Von Behrens PE, Fairbanks DM. High stroke, highly integrated SMA actuators. In: US Patent 7017345 B2. Alfmeier Prazision AG.; 2006.

Yson AP, Messinger RH. Shape memory alloy linear actuator. In: US Patent 7464548B2. The Boeing Co.; 2008.

Garscha M, Auernhammer H, Engelhardt K. Turn-actuator with tensile element of shape memory alloy. In: US Patents 2008/0271559A1. Alfmeier Prazision AG.; 2008.

Takahashi M. Shape memory alloys actuator. In: US Patent 2009/0302708A1. Olympus Co.; 2009.

Taya M, Wada T, Chen H-h, Kusaka M, Cheng V, Wang C. Torque actuator incorporating shape memory alloy composites. In: US Patent 7810326B2. University of Washington; 2010.

Taya M, Cheng V, Sugandi H, Liang Y, Chen H, Wang C-Y. Actuators based on ferromagnetic shape memory alloy composites. In: US Patent 7688168B2. University of Washington; 2010.

Butera F. Actuator comprising elements made of SMA with broadened range of working temperatures. In: EP Patent 2,171,183. SAES GETTERS S.p.A.; 2010.

Altaii K, Thomas B. Shape memory alloy motor as incorporated into solar tracking mechanism. In: US Patent 7692091B22010.

Yang K. Actuation device having shape memory alloy component. In: US Patent 7795823B2. Chicony Electronics Co.; 2010.

Gao X, Browne AL, Alexander PW, Johnson NL, Brown W. Apparatus and method of controlling phase transformation temperature of a shape memory alloy. In: US Patents 2013/0011806A1. Dynalloy Inc., GM Global Technology Operations LLC; 2013.

Romanelli MJ, Otterstedt PJ. Pre-tensioned shape memory actuator. In: US Patents 4899543. Grumman Aerospace Corp., Bethpage, NY, USA; 1990. p. 15.

Ross RJ. Wedge-set sealing flap for use in subterranean wellbores. In: US Patents 5215145. Baker Hughes Inc., Houston, Texas, USA; 1993. p. 13.

Kennedy JR, Larson Jr DJ. Method of cold working holes using a shape memory alloy tool. In: US Patents 5265456. Grumman Aerospace Corp.; 1993. p. 7.

Porter WW. Electrically-operated heat exchanger release mechanism. In: US Patents 5581441. AT&T Global Information Solutions Co., Dayton, Ohio, USA; 1996. p. 7.

Schron JH, Summers JL. Clamping device. In: EP Patent 834,3801998.

White PM. Stress induced interposed connector. In: US Patent 6257593B12001.

White PM. Stress-induced gasket. In: US Patents 6435519B12002.

Cheng Y-T, Ni W, Ulicny JC. Releasable fastener system. In: US Patent 6766566B2. General Motors Corp.; 2004.

Carman GP, Mitrovic M, Pulliam WJ. Infinitely adjustable engagement system and method. In: US Patent 2006/0110211A12004.

Cheng Y-T, Ni W, Lev LC, Lukitsch MJ, Grummon DS, Weiner AM. Metallic-based adhesion materials. In: US Patent 7005195B2. General Motors Corp.; 2006.

Johnson AD, Bokaie M, Martynov V. Constant load bolt. In: US Patents 2008/0075557A12006.

Rudduck D, Blattmann L, Brown S. Instrument panel. In: WO Patent 2,007,068,034. Telezygology Inc.; 2007.

White PM. Drive shaft coupling. In: US Patents 7407440B2. Precimed S.A.; 2008.

Johnson AD, Bokaie M, Martynov V. Non-explosive releasable coupling device. In: US Patents 7422403B12008.

Rudduck D, Goldspink LR, Ng NA, Blattmann LD, Park JR, Kelliher CG, et al. Fasteners and other assemblies. In: US Patent 7610783B2. Telezygology Inc.; 2009.

Johnson NL, Browne AL, Strom KA, Brei D, Barnes BM, Luntz JE. Ratchet reset mechanism. In: US Patents 7963360B2. GM Global Technology Operations, Inc.; 2011.

Homma D. Valve driven by shape memory alloy. In: US Patent 4973024A. Toki Corporation Kabushiki Kaisha; 1990.

Coffee CL. Linearly actuated valve. In: US Patents 5211371. Advanced Control Technologies, Inc., Indianapolis, Ind.; 1993. p. 10.

Hines A, Gausman TJ, Glime WH, Hill SH, Rigsby BS. Shape memory alloy actuated fluid control valve. In: US Patents 6247678B1. Swagelok Co.; 2001.

Morehead JH, Harrington HE. Thermally-actuated press brake tool holder technology. In: US Patent 7296457B2. Wilson Tool International Inc.; 2007.

Browne AL, Buravalla VR, Johnson NL. Reconfigurable tools and/or dies, reconfigurable inserts for tools and/or dies, and methods of use. In: US Patent 7188498B2. GM Global Technology Operations, Inc.; 2007.

Vasquez JA, Garrod TC. Resettable bi-stable thermal valve. In: US Patent 7424978B2. Honeywell International Inc.; 2008.

MacGregor R, Szilagyi A, Von Behrens PE. Flow control assemblies having integrally formed shape memory alloy actuators. In: US Patent 7350762B2. Alfmeier Prazision AG.; 2008.

Jenko EJ. Method adjustable hot runner assembly seals and tip height using active material elements. In: US Patent 7632450B2. Husky Injection Molding Systems Ltd.; 2009.

Ingram RB. Process for the production of two-way shape memory alloys. In: US Patents 5836066. Innovative Dynamics, Inc., Ithaca, NY, USA; 1998. p. 23.

Carpenter BF, Draper JL. Process for conditioning shape memory alloys. In: US Patents 6149742. Lockheed Martin Corp., Bethesda, Md.; 2000. p. 17.

Ashurst GR. Ambient temperature shape memory alloy actuator. In: US Patent 6427712B1. Robertshaw Controls Co.; 2002.

Berendt CJ. A method of preparing nitinol for use in manufacturing instruments with improved fatigue resistance. In: EP Patent 1,762,633. Sportswire LLC.; 2007.

Asada HH, Cho K-J, Selden B. Shape memory alloy actuator system using segmented binary control. In: US Patents 7188473B1. Harry Haruriko Asada; 2007.

Hamaguchi K, Tanii J, Kosaka A. System and method of manufacturing actuator. In: US Patent 7614228B2. Konica Minolta Holdings Inc.; 2009.

Johnson AD, Bokaie M, Martynov V. Single crystal shape memory alloy devices and methods. In: US Patents 7544257B22009.

Johnson AD, Martynov V, Bokaie MD, Gray GR. Hyperelastic shape setting devices and fabrication methods. In: US Patents 7842143B22010.

Fasching, 2011, An Evaluation of a NiTiCo alloy and its suitability for medical device applications, J Mater Eng Perform, 20, 641, 10.1007/s11665-011-9845-z

Meng, 2012, Functionally graded NiTi strips prepared by laser surface anneal, Acta Mater, 60, 1658, 10.1016/j.actamat.2011.11.052

Ross RJ. Shape-memory actuator for use in subterranean wells. In: US Patents 5199497. Baker Hughes Inc., Houston, Texas, USA; 1993. p. 13.

Ross RJ. Firing mechanism for actuating wellbore tools. In: US Patents 5273116. Baker Hughes Inc., Houston, Texas, USA; 1993. p. 13.

Decker LH. Refreshable braille-cell display implemented with shape memory alloys. In: US Patents 5685721A. American Research Corporation of Virginia; 1997.

Goldstein D, Nguyen TD. Shape memory actuator system. In: US Patents 6041728. The USA as representaed by the Secretary of the Navy, Washington DC, USA; 2000.

Silverbrook K. Shape memory alloy ink jet printing mechanism. In: US Patents 6557977. Silverbrook Research Pty Ltd; 2003.

Cheng Y-T, Ni W, Lukitsch MJ, Weiner AM, Grummon DS. Self-healing tribological surfaces. In: US Patent 7060140B2. General Motors Corp.; 2006.

Rey NM, Miller RM, Tillman TG, Rukus RM, Kettle JL. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators. In: US Patents 7004047 B2. United Technology Corp.; 2006.

Walak S. Two way composite nitinol actuator. In: US Patents 2007/0200656 A12007.

Shah TK, Corboy GW, William Russell Kraft, II. Cold launch system comprising shape-memory alloy actuator. In: US Patents 7464634B1. Lockheed Martin Corp.; 2008.

Fan J, Yu W, Zheng R. Underwire assembly for brassiere, brassiere using the same, and process for producing and wearing the brassiere. In: US Patents 7591707B2. The Hong Kong Polytechnic University; 2009.

Smith JE, Pertl FA, Angle, II, Gerald M, Yarborough CN, Nawrocki AJ, et al. Airfoil for circulation controlled vertical axis wind turbines. In: US Patent 2012/0003090A1. West Virginia University; 2012.

GmbH T. TROX TJN jet nozzles – acoustically and technically optimised. 2013. p. Self-adjusting variant with fast SMA actuator.

Webster, 1984, Magnetic order and phase transformation in Ni2MnGa, Philoso Mag B, 49, 295, 10.1080/13642817408246515

Ullakko, 1996, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl Phys Lett, 69, 1966, 10.1063/1.117637

Ullakko, 1997, Magnetically controlled shape memory effect in Ni2MnGa intermetallics, Scripta Mater, 36, 1133, 10.1016/S1359-6462(96)00483-6

Bigelow, 2010, Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling, Metall Mat Trans A, 41, 3065, 10.1007/s11661-010-0365-5

Uchino, 1989, Recent topics of ceramic actuators how to develop new ceramic devices, Ferroelectrics, 91, 281, 10.1080/00150198908015745

Swain MV. Shape memory behaviour in partially stabilized zirconia ceramics; 1986.

Browne AL, Johnson NL. Reversibly opening and closing a grille using active materials. In: US Patents 7498926B2. GM Global Technology Operations Inc.; 2009.

Mc Knight GP, Massey C, Herrera GA, Barvosa-Carter W, Johnson NL, Browne AL. Airflow control devices based on active materials. In: US Patents 7429074B2. General Motors Corp.; 2008.

Aase JH, Browne AL, Johnson NL, Ulicny JC. Airflow control devices based on active materials. In: US Patents 7059664B2. General Motors Corp.; 2006.

Macgregor R, Szilagyi A, Von Behrens P. Flow control assemblies having integrally formed shape memory alloy actuators. WO Patent 2004097218: Nanomuscle Inc.; 2004.

Hashemi M, Schickel D. Actuator system for a lighting system. In: US Patent 8011813B2. Visteon Global Technologies Inc.; 2011.

Browne AL, Aase JH, Johnson NL, Keefe AC. Adaptive head light and lens assemblies. In: US Patent 7275846B2. General Motors Corp.; 2007.

Bohan SM. Shape memory alloy rotary actuator with capacitive position feedback. In: US Patent 7503444B2. BorgWarner Inc.; 2009.

Kutlucinar I. Shape memory alloy actuators for use with repetitive motion devices. In: US Patent 6915633B2. Emergency Warning Systems Inc.; 2005.

Buchanan HC, Victor KR. Windshield wiper with adjustable wiping pressure. In: US Patents 5062175. GM Corp., Ohio, USA; 1991. p. 6.

Shaw G, Prince T, Snyder J, Willett M, Lisy F. Pressure sensor with integrated cooler and methods of using. In: US Patent 7587944B1. Orbital Research Inc.; 2009.

Alacqua S, Capretti G, Biasiotto M, Zanella A. Sunshade device for motor-vehicles, with shape memory actuator. In: US Patent 7823955B2. CRF Societa Consortile per Azioni; 2010.

Lane P. Wind deflector with actuating means for a slidable roof system. In: EP Patent 1,288,048. Prinz & Partner GbR; 2008.

Butera F, Alacqua S, Zanella A. Sunshade unit for motor-vehicles with a shape memory actuator. In: EP Patent 1,726,467. CRF Societa Consortile per Azioni; 2006.

Predki, 2010, Concept of a start-up clutch with nickel-titanium shape memory alloys, Forsch Ingenieurwes, 74, 41, 10.1007/s10010-010-0114-3

Browne AL, Stauffer LE, Mathieu RJ, Szczerba JF, Johnson NL. Active material enabled self-actuated devices. In: US Patents 7631915B2. GM Global Technology Operations Inc.; 2009.

Dominique CG. Lock Indicator. In: US Patent 2003/0177974A1. Ford Global Technologies Inc.; 2003.

Dominique CG. Door handle device. In: EP Patent 1,347,131. Ford Global Technologies Inc.; 2003.

Niskanen JD, Daniels AR, Mrkovic D. Vehicle lock controlled by a shape memory alloy actuator. In: US Patents 7364211B2. Intier Automotive Closures Inc.; 2008.

Knebel AM, Salemi MR. Shape memory alloy fuel injector. In: US Patents 6691977B2. Delphi technologies, Inc.; 2004.

Allston BK, Knebel AM, Salemi MR. Method and apparatus for controlling a shape memory alloy fuel injector. In: US Patents 6019113A. GM Corp., Detroit, Michigan, USA; 2000.

Wu T. High pressure fluid passage sealing for internal combustion engine fuel injectors and method of making same. In: US Patents 5862995. Diesel Technology Co., Kentwood, Michigan, USA; 1999.

Kilgore JT, Robinson BS. Fuel system containing a shape memory alloy. In: US Patents 6039030A. Siemens Automotive Corporation; 2000.

Miyazaki S, Onoda M, Okada N, Fujii Y, Kim HY. Piston Ring. In: WO Patent 2,008,016,009. Nippon Piston Ring Co.; 2008.

Brei D, Redmond J, Wilmot NA, Browne AL, Johnson NL, Jones GL. Hood lift mechanisms utilizing active materials and methods of use. In: US Patent 7063377B2. General Motors Corp.; 2006.

Perry PD, Veinotte A. Automotive vapor purge valve using shape memory alloy wire. In: US Patents 7089919B2. Siemens Vdo Automotive Inc.; 2006.

Browne AL, Johnson NL, Sears IG. On demand morphable automotive body moldings and surfaces. In: US Patents 7997632B2. GM Global Technology Operations, Inc.; 2011.

Browne AL, Johnson NL, Kramarczyk MA. Tunable, healable vehicle impact devices. In: US Patent 7029044B2. General Motors Corp.; 2006.

Browne AL, Johnson NL. Energy absorbing assembly and methods for operating the same. In: US Patents 6910714B2. General Motors Corp.; 2005.

Choi JY. Exterior airbag cushion for vehicle and device having the same. In: US Patents. Hyundai Motor Company, Seoul (KR) Kia Motors Corp., Seoul (KR); 2011.

Jones SD, Campbell JP, Janmey RM. Battery fluid manager using shape memory alloy components with different actuation temperatures. In: US Patents 7833649B2. Eveready Battery Company, Inc., St. Louis, MO (US); 2010.

Rober KB, Browne AL, Johnson NL, Aase JH. Reversibly deployable air dam. In: US Patents 7686382B2. GM Global Technology Operations, Inc.; 2010.

Mitteer DM. Shifter with actuator incorporating shape memory alloy. In: US Patent 7814810B2. Grand Haven Stamped Products, JSJ Corp.; 2010.

Browne AL, Johnson NL, Mankame ND, Barvosa-carter W, Bucknor NK, Henry CP, et al. Active material based bodies for varying frictional force levels at the interface between two surfaces. In: US Patent 2009/0045042A1. GM Global Technology Operations Inc.; 2009.

Browne AL, Johnson NL, Rober KB, Voss MA, Juechter TJ, Moss ED. Reversibly deployable spoiler. In: US Patents US007607717B2. GM Global Technology Operations Inc.; 2009.

Browne AL, Johnson NL, Chernoff AB, Kramarczyk MA, Ukpai UI, Ulicny JC, et al. Active material based concealment assemblies. In: US Patent 7900986B2. GM Global Technology Operations Inc.; 2011.

Browne AL, Mankame ND, Johnson NL, Keefe AC. Panels having active material based fold lines. In: US Patents 7284786B2. GM Global Technology Operations, Inc.; 2007.

Yang R-J, Le JJ, Chou C, Tzou H-S. Automotive vehicle with structural panel having selectively deployable shape memory alloy elements. In: US Patent 7278679 B2. Ford Global Technologies LLC.; 2007.

Browne AL, Johnson NL, Mankame ND, Ulicny JC, Jones GL, O’Kane JC. Customizable strut assemblies and articles that employ the same. In: US Patent 2005/0199455A1. General Motors Corp.; 2005.

Zimmer G, Zimmer M. Frictional blocking device comprising an actuator. In: WO Patent 2006/063566A12006.

Oku M. Pneumatic radial tire with belt cords having at least one shape-memory alloy filament. In: US Patent 5242002. Sumitomo Rubber Industries Ltd.; 1993.

Alexander PW, Brown JH, Zolno A. Active material head restraint assembly. In: US Patents 7963600B2. GM Global Technology Operations LLC; 2011.

Lawall JP, McQueen DK, Johnson NL, Browne AL, Alexander PW. Recliner release actuation through active materials. In: US Patent 7931337B2. GM Global Technology Operations Inc.; 2011.

Browne AL, Johnson NL, Zavattieri PD, Ukpai UI, Ulicny JC, Cafeo JA, et al. Active material based conformable and reconfigurable seats. In: US Patent 7758121B2. GM Global Technology Operations, Inc.; 2010.

Gandhi UN. Seat assemblies for vehicles. In: US Patent 7729828B2. Toyota Motor Engineering & Manufacturing North America Inc.; 2010.

Kennedy KR, Nathan JF, Hanlon SR, Maue HW. Smartfold electronic actuation. In: US Patent 7775596B2. Lear Corp.; 2010.

Browne AL, Johnson NL, Khoury JY, Alexander PW, Carpenter MG. Active material actuated headrest assemblies. In: US Patents 7556313B2. GM Global Technology Operations Inc.; 2009.

Asada HH, Cho K-J, Roy B. Rapid heating, cooling and massaging for car seats using integrated shape memory alloy actuators and thermoelectric devices. In: US Patents 2005/0253425A1. Massachussets Institute of Technology; 2005.

Gheorghita, 2013, Using Shape memory alloys in automotive safety systems, 909

Lawall JP, McQueen DK, Morris SE, Browne AL, Johnson NL, Thomas SD, et al. Airbag system. In: US Patents. GM Global Technology Operations, Inc., Detroit, MI (US); 2010.

Melz T, Seipel B, Sielhorst B, Zimmerman E. Device for increasing occupant protection in a motor vehicle during a lateral impact. In: US Patent 7905517B2. Fraunhofer Gesellschaft; 2011.

Balta, 2001, Embedded shape memory alloys confer aerodynamic profile adaptivity, Smart Mater Bull, 2001, 8, 10.1016/S1471-3918(01)80094-0

Dunne JP, Hopkins MA, Baumann EW, Pitt DM, White EV. Overview of the SAMPSON smart inlet. In: 6th Annual International symposium on smart structures and materials conference 1999. p. 1–5.

Geraci, 2003, Development of smart vortex generators, Smart Struct Mater, 2003, 1

Nam C, Chattopadhyay A, Kim Y. Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement. p. 226–36.

Kate M, Bettencourt G, Marquis J, Gerratt A, Fallon P, Kierstead B, et al. SoftBot: A soft-material flexible robot based on caterpillar biomechanics. Tufts University, Medford, MA; 2008.

Lee, 2008, Design parametric study based fabrication and evaluation of in-pipe moving mechanism using shape memory alloy actuators, J Mech Sci Technol, 22, 96, 10.1007/s12206-007-1011-z

Menciassi, 2006, Development of a biomimetic miniature robotic crawler, Auton Rob, 21, 155, 10.1007/s10514-006-7846-9

Gambao E, Hernando M, Brunete A. Multiconfigurable inspection robots for low diameter canalizations. Bulletin22nd International Symposium on Automation and Robotics in Construction (ISARC 2005). Ferrara Italy; 2005.

Huitao Y, Peisun M, Chongzhen C. A novel in-pipe worming robot based on SMA. In: 2005 IEEE International Conference Mechatronics and Automation, vol. 2. 2005. p. 923–7.

Shiotsu A, Yamanaka M, Matsuyama Y, Nakanishi H, Hara Y, Tsuboi T, et al. Crawling and jumping soft robot KOHARO. In: 36th International Symposium on Robotics (ISR 2005). Tokyo, Japan; 2005.

Liu CY, Liao WH. A snake robot using shape memory alloys. In: 2004 ROBIO 2004 IEEE International Conference on Robotics and Biomimetics; 2004. p. 601–5.

Young Pyo L, Byungkyu K, Moon Gu L, Jong-Oh P. Locomotive mechanism design and fabrication of biomimetic micro robot using shape memory alloy. In: 2004 Proceedings ICRA ’04 2004 IEEE international conference on robotics and automation, vol. 5. 2004. p. 5007–12.

Menciassi A, Gorini S, Pernorio G, Dario P. A SMA actuated artificial earthworm. In: 2004 Proceedings ICRA ’04 2004 IEEE international conference on robotics and automation, vol. 4. 2004. p. 3282–7

Cepolina F, Michelini RC. Robots in medicine: a survey of in-body nursing aids – introductory overview and concept design hints. In: 35th international symposium on robotics 2004 (ISR2004). Paris, France; 2004.

Z-n, 2001, Study on moving principle of colonoscopic robot, J Shanghai Univ, 5, 143, 10.1007/s11741-001-0011-y

Reynaerts D, Peirs J, Van Brussel H. Design of a shape memory actuated gastro-intestinal intervention system. In: 5th International conference on new actuators. Breemen, Germany; 1996. p. 409–12.

Berry M, Garcia E. Bio-inspired shape memory alloy actuated hexapod robot; 2008:69281M-M.

Hoover AM, Steltz E, Fearing RS. RoACH: An autonomous 2.4g crawling hexapod robot. In: IEEE/RSJ international conference on intelligent robots and systems 2008 (IROS 2008); 2008. p. 26–33.

Sugiyama, 2006, Crawling and jumping by a deformable robot, Int J Rob Res, 25, 603, 10.1177/0278364906065386

Nishida M, Tanaka K, Wang HO. Development and control of a micro biped walking robot using shape memory alloys. In: 2006 ICRA 2006 proceedings 2006 IEEE international conference on robotics and automation; 2006. p. 1604–9.

Chang-jun, 2004, A prototype micro-wheeled-robot using SMA actuator, Sens Actuators, A, 113, 94, 10.1016/j.sna.2004.01.017

Bundhoo, 2009, A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: design and evaluation, Robotica, 27, 131, 10.1017/S026357470800458X

Andrianesis K, Tzes A. Design of an anthropomorphic prosthetic hand driven by Shape Memory Alloy actuators. In: 2008 BioRob 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics; 2008. p. 517–22.

Price, 2007, Design and control of a shape memory alloy based dexterous robot hand, Smart Mater Struct, 16, 1401, 10.1088/0964-1726/16/4/055

O’toole KT, McGrath MM. Mechanical design and theoretical analysis of a four fingered prosthetic hand incorporating embedded SMA bundle actuators. World Academy of Science, Engineering and Technology; 2007.

Maeno T, Hino T. Miniature five-fingered robot hand driven by shape memory alloy actuators. In: 12th IASTED international conference on robotics and applications (IASTED) 2006. Honolulu, Hawaii, USA; 2006.

Hino T, Maeno T. Development of a miniature robot finger with a variable stiffness mechanism using shape memory alloy. 2004.

De Laurentis, 2002, Mechanical design of a shape memory alloy actuated prosthetic hand, Technol Health Care, 10, 91, 10.3233/THC-2002-10202

Trimmer BA, Takesian A, Sweet B, Rogers CB, Hake DC, Rogers DJ. Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In: 7th international symposium on technology and mine problem. Monterey, California, USA; 2006.

Menon C, Sitti M. Biologically inspired adhesion based surface climbing robots. In: 2005 ICRA 2005 Proceedings of the 2005 IEEE international conference on robotics and automation; 2005. p. 2715–20.

Hong, 2011, Twelve degree of freedom baby humanoid head using shape memory alloy actuators, J Mech, 3

Hara F, Akazawa H, Kobayashi H. Realistic facial expressions by SMA driven face robot. In: 2001 Proceedings 10th IEEE international, workshop on robot and human interactive communication; 2001. p. 504–11.

Alex, 2011, A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators, Bioinspiration Biomimetics., 6, 036004, 10.1088/1748-3182/6/3/036004

Liwei S, Shuxiang G, Asaka K. A novel jellyfish-like biomimetic microrobot. In: 2010 IEEE/ICME International Conference on Complex Medical Engineering (CME); 2010. p. 277–81.

Kyu-Jin C, Hawkes E, Quinn C, Wood RJ. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: 2008 ICRA 2008 IEEE international conference on Robotics and Automation; 2008. p. 706–11.

Zhenlong, 2008, Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion, Smart Mater Struct, 17, 025039, 10.1088/0964-1726/17/2/025039

Ashrafiuon, 2006, Position control of a three-link shape memory alloy actuated robot, J Intell Mater Syst Struct, 17, 381, 10.1177/1045389X06056780

Terauchi M, Zenba K, Shimada A, Fujita M. Controller design on the fingerspelling robot hand using shape memory alloy. IN: 2006 international joint conference SICE-ICASE; 2006. p. 3480–3.

Huang HL, Park S-H, Park J-O. Shape memory alloy based flower robot. In: 39th international symposium on robotics 2008. Seoul, Korea 2008.

Torrisi, 1999, The NiTi superelastic alloy application to the dentistry field, Bio-Med Mater Eng, 9, 39

Airoldi, 1995, Superelasticity and shape memory effect in NiTi orthodontic wires, J Phys IV, 5

Wang, 1999, Use of a nitinol gooseneck snare to open an incompletely expanded over-the-wire stainless steel Greenfield filter, AJR Am J Roentgenol, 172, 499, 10.2214/ajr.172.2.9930812

Cekirge, 1993, Percutaneous retrieval of foreign bodies: experience with the nitinol goose neck snare, J Vasc Interv Radiol, 4, 805, 10.1016/S1051-0443(93)71978-8

Idelsohn, 2004, Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA), J Mater Sci – Mater Med, 15, 541, 10.1023/B:JMSM.0000021135.72288.8f

Elisa, 2009, Superelastic leg design optimization for an endoscopic capsule with active locomotion, Smart Mater Struct, 18, 015001, 10.1088/0964-1726/18/1/015001

Sunkil, 2008, A novel microactuator for microbiopsy in capsular endoscopes, J Micromech Microeng, 18, 025032, 10.1088/0960-1317/18/2/025032

Smith, 2008, Endoscopic placement of multiple artificial chordae with robotic assistance and nitinol clip fixation, J Thorac Cardiovasc Surg, 135, 610, 10.1016/j.jtcvs.2007.10.041

Kourambas, 2000, Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi, Urology, 56, 935, 10.1016/S0090-4295(00)00821-9

Cuschieri, 1991, Variable curvature shape- memory spatula for laparoscopic surgery, Surg Endosc, 5, 179, 10.1007/BF02653258

Sattapan, 2000, Torque during canal instrumentation using rotary nickel-titanium files, J Endo, 26, 156, 10.1097/00004770-200003000-00007

Kujala, 2004, Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon, Biomaterials, 25, 353, 10.1016/S0142-9612(03)00488-5

Laster, 2001, Fixation of a frontozygomatic fracture with a shape-memory staple, Br J Oral Maxillofac Surg, 39, 324, 10.1054/bjom.2001.0633

Contra R, Dallolio V, Franzoso G, Gastaldi D, Vena P. Biomechanical study of a pathologic lumbar functional spinal unit and a possible surgical treatment through the implant of an interspinous device; 2005.

Wever, 2002, Scoliosis correction with shape-memory metal: results of an experimental study, Eur Spine J., 11, 100, 10.1007/s005860100347

Sanders, 1993, A preliminary investigation of shape memory alloys in the surgical correction of scoliosis, Spine, 18, 1640, 10.1097/00007632-199309000-00012

Sanders AE, Sanders JO, More RB. Nitinol spinal instrumentation and method for surgically treating scoliosis. In: US Patent 52902891994.

Schmerling, 1976, Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis, J Biomed Mater Res, 10, 879, 10.1002/jbm.820100607

Rossi, 1994, Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients, J Vasc Interv Radiol, 5, 279, 10.1016/S1051-0443(94)71483-4

Davids, 1992, Randomised trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction, Lancet, 340, 1488, 10.1016/0140-6736(92)92752-2

Coati M, Marazzi G, Marini G, Rossi G, Rossi L, Verturini D. Intramedullary nail comprising elements of shape-memory material. In: US Patent 8162942. Orthofix S.r.l.; 2012.

Kujala, 2002, Bone modeling controlled by a nickel–titanium shape memory alloy intramedullary nail, Biomaterials, 23, 2535, 10.1016/S0142-9612(01)00388-X

Kardas D, Rust W, Polley GA, Fabian T. Turning up the volume. ADVANTAGE. 2007:4.

Rajan, 2005, In vivo performance of the Nitinol shape-memory stapes prosthesis during hearing restoration surgery in otosclerosis: a first report, J Biomed Mater Res B Appl Biomater, 72B, 305, 10.1002/jbm.b.30165

Yanagihara, 1997, Tracheal stenosis treated with self-expanding nitinol stent, Ann Thorac Surg, 63, 1786, 10.1016/S0003-4975(97)00369-X

Vinograd, 1994, A new intratracheal stent made from nitinol, an alloy with “shape memory effect”, J Thorac Cardiovasc Surg, 107, 1255, 10.1016/S0022-5223(94)70046-X

DeLaurentis KJ, Mavroidis C, Pfeiffer C. Development of a shape memory alloy actuated robotic hand. Neural Networks: Citeseer; 2000.

Choudhary, 2004, First metatarsophalangeal joint arthrodesis: a new technique of internal fixation by using memory compression staples, J Foot Ankle Surg, 43, 312, 10.1053/j.jfas.2004.07.003

Song, 2005, Shape memory alloy clip for compression colonic anastomosis, J Biomech Eng, 127, 351, 10.1115/1.1871195

Raju, 2004, Endoclips for GI endoscopy, Gastrointest Endosc, 59, 267, 10.1016/S0016-5107(03)02110-2

Nudelman, 2002, Colonic anastomosis with the nickel-titanium temperature-dependent memory-shape device, Am J Surg, 183, 697, 10.1016/S0002-9610(02)00857-7

Tack, 1998, Self-expandable metallic stents in the palliation of rectosigmoidal carcinoma: a follow-up study, Gastrointest Endosc, 48, 267, 10.1016/S0016-5107(98)70189-0

Angueira, 1997, Esophageal stents for inoperable esophageal cancer: which to use?, Am J Gastroenterol, 92, 373

Pocek, 1996, Palliative treatment of neoplastic strictures by self-expanding nitinol Strecker stent, Eur Radiol, 6, 230, 10.1007/BF00181157

Cwikiel, 1993, Self-expanding stent in the treatment of benign esophageal strictures: experimental study in pigs and presentation of clinical cases, Radiology, 187, 667, 10.1148/radiology.187.3.8497612

Uflacker, 2001, Endovascular treatment of abdominal aortic aneurysms: a review, Eur Radiol, 11, 739, 10.1007/s003300000747

Kaufman, 2000, Endovascular repair of abdominal aortic aneurysms, Am J Roentgenol, 175, 289, 10.2214/ajr.175.2.1750289

Tanaka, 1999, Artificial SMA valve for treatment of urinary incontinence: upgrading of valve and introduction of transcutaneous transformer, Bio-Med Mater Eng, 9, 97

Chonan, 1997, Development of an artificial urethral valve using SMA actuators, Smart Mater Struct, 6, 410, 10.1088/0964-1726/6/4/004

Gottfried, 1997, Treatment of high-risk patients with subvesical obstruction from advanced prostatic carcinoma using a thermosensitive mesh stent, Br J Urol, 80, 623, 10.1046/j.1464-410X.1997.00416.x

Mori, 1995, Placement of the urethral stent made of shape memory alloy in management of benign prostatic hypertrophy for debilitated patients, J Urology, 154, 1065, 10.1016/S0022-5347(01)66977-5

Yachia D. The use of urethral stents for the treatment of urethral strictures. Annales d’urologie. 4 ed1993. p. 245.

Himpens, 1993, Laparoscopic inguinal hernioplasty, Surg Endosc, 7, 315, 10.1007/BF00725948

Hausegger, 1994, Iliac artery stent placement: clinical experience with a nitinol stent, Radiology, 190, 199, 10.1148/radiology.190.1.8259404

Bruckheimer, 2003, In vitro evaluation of a retrievable low-profile nitinol vena cava filter, J Vasc Interv Radiol, 14, 469, 10.1097/01.RVI.0000064863.65229.C3

Asch, 2002, Initial experience in humans with a new retrievable inferior vena cava filter1, Radiology, 225, 835, 10.1148/radiol.2252011825

Engmann, 1998, Clinical experience with the antecubital simon nitinol IVC filter, J Vasc Interv Radiol, 9, 774, 10.1016/S1051-0443(98)70390-2

Poletti, 1998, Long-term results of the Simon nitinol inferior vena cava filter, Eur Radiol, 8, 289, 10.1007/s003300050382

Simon, 1977, A vena cava filter using thermal shape memory alloy experimental aspects, Radiology, 125, 89, 10.1148/125.1.89

Walsh, 2000, The Amplatzer septal occluder, Cardiol Young, 10, 493, 10.1017/S1047951100008180

Chan, 1999, Transcatheter closure of atrial septal defect and interatrial communications with a new self expanding nitinol double disc device (Amplatzer septal occluder): multicentre UK experience, Heart, 82, 300, 10.1136/hrt.82.3.300

Thanopoulos, 1998, Closure of atrial septal defects with the amplatzer occlusion device: preliminary results, J Am Coll Cardiol, 31, 1110, 10.1016/S0735-1097(98)00039-4

Khouri RK. Method and apparatus for expanding soft tissue with shape memory alloys. In: US Patent 6478656. Brava LLC.; 2002.

Lewis, 2008, Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art review, J Biomed Mater Res B Appl Biomater, 86B, 569, 10.1002/jbm.b.31028

Tyagi, 2003, Self-and balloon-expandable stent implantation for severe native coarctation of aorta in adults, Am Heart J, 146, 920, 10.1016/S0002-8703(03)00434-4

Carter, 1998, Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model, Cathet Cardiovasc Diagn, 44, 193, 10.1002/(SICI)1097-0304(199806)44:2<193::AID-CCD13>3.0.CO;2-O

Levi, 2008, Smart materials applications for pediatric cardiovascular devices, Pediatr Res, 63, 552, 10.1203/PDR.0b013e31816a9d18

Coats, 2007, New percutaneous treatments for valve disease, Heart, 93, 639, 10.1136/hrt.2005.074799

Laborde, 2006, Percutaneous implantation of the corevalve aortic valve prosthesis for patients presenting high risk for surgical valve replacement, EuroIntervention: J EuroPCR Collaboration Working Group Interv Cardiol Eur Soc Cardiol, 1, 472

Olsen TW, Loftness PE, Erdman AG. Surgical support structure. In: EP Patent 1,986,581B1. University of Minnesota; 2012.