A review of reverse osmosis membrane materials for desalination—Development to date and future potential

Journal of Membrane Science - Tập 370 Số 1-2 - Trang 1-22 - 2011
Kah Peng Lee1, Tom Arnot1, Davide Mattia1
1Department of Chemical Engineering, University of Bath Claverton Down, Bath BA2 7AY, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Petersen, 1993, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83, 81, 10.1016/0376-7388(93)80014-O

Li, 2010, Recent developments in reverse osmosis desalination membranes, JMCh, 20, 4551

T.R. Malthus, An Essay on the Principle of Population, 1798.

Comprehensive Assessment of the Freshwater Resources of the World, World Meteorological Organization, (1997) 9.

Fry, 2008, Water and nonwater-related challenges of achieving global sanitation coverage, Environ. Sci. Technol., 42, 4298, 10.1021/es7025856

Montgomery, 2007, Water and sanitation in developing countries: including health in the equation, Environmental Science & Technology, 41, 17, 10.1021/es072435t

Health and Environment in Sustainable Development: Five Years after the Earth Summit, (1997) pp. 54–55.

Progress on Drinking Water and Sanitation: Special Focus on Sanitation, 2008.

Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599

Gleick, 2008

New Desalination Capacity, 1980-2009-Chart, Global Water Intelligence, 10 (2009).

Desalination: A National Perspective, National Academies Press, 2009.

The Big Dipper: Contracted Desalination Capacity Forecast-Chart, Global Water Intelligence, 10 (2009).

Energy Makes All the Difference: Desalination Operating Costs Compared - Chart, Global Water Intelligence, 8 (2007).

Hsu, 2002, Seawater desalination by direct contact membrane distillation, Desalination, 143, 279, 10.1016/S0011-9164(02)00266-7

Sadrzadeh, 2008, Sea water desalination using electrodialysis, Desalination, 221, 440, 10.1016/j.desal.2007.01.103

Oren, 2008, Capacitive deionization (Cdi) for desalination and water treatment -- past, present and future (a Review), Desalination, 228, 10, 10.1016/j.desal.2007.08.005

McGinnis, 2007, Energy requirements of ammonia-carbon dioxide forward osmosis desalination, Desalination, 207, 370, 10.1016/j.desal.2006.08.012

IDA Newsletter, (2006) 9-10.

The International Desalination and Water Reuse Quarterly, 16 (2006) 10-22.

Petersen, 1990, Thin film composite reverse osmosis membrane

J.E. Cadotte, Reverse Osmosis Membrane, Patent Application No. 4039440 (1977).

Tarboush, 2008, Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules, J. Membr. Sci., 325, 166, 10.1016/j.memsci.2008.07.037

Li, 2007, Polyamide thin film composite membranes prepared from 3,4’,5-biphenyl triacyl chloride, 3,3’,5,5’-biphenyl tetraacyl chloride and M-phenylenediamine, J. Membr. Sci., 289, 258, 10.1016/j.memsci.2006.12.007

Pearce, 2007, Water and wastewater filtration: membrane module format, Filtration & Separation, 44, 31, 10.1016/S0015-1882(07)70117-9

Polasek, 2003, Conversion from hollow fiber to spiral technology in large seawater RO systems -- process design and economics, Desalination, 156, 239, 10.1016/S0011-9164(03)00346-1

Market Outlook for RO/NF and UF/MF Membranes Used for Large-Volume Applications, Water Executive, (2004) 9-11.

Kumano, 2008, Cellulose triacetate membranes for reverse osmosis, 21

Filmtec™ Membranes - Filmtec Sw30hr Le-400 Seawater Reverse Osmosis Element, in, Dow Chemical Company.

J.-M. Laine, Design & Operation Considerations: Two Large-Scale Case Studies, in, Suez Environment, 2009.

R.L. Stover, Low Energy Consumption SWRO, in: Clean Technology 2008, Boston Massachusetts, 2008.

A. Shimokawa, Desalination Plant with Unique Methods in Fukuoka, in: Japan-U.S. Governmental Conference on Drinking Water Quality Management and Wastewater Control, Las Vegas, 2009.

Europe's Largest SWRO Plant Opens, Water Desalination Report, 45 (2009).

Membrane Element Swc4+, in, Hydranautics Corporation.

Toray Sea Water RO Elements - Tm800c, in, Toray Industries.

Kumano, 2008, Cellulose triacetate membranes for reverse osmosis, 39

Yun, 2006, Reducing costs for large-scale desalting plants using large-diameter, reverse osmosis membranes, Desalination, 189, 141, 10.1016/j.desal.2005.06.022

Ng, 2008, Novel 16-inch spiral-wound RO systems for water reclamation – a quantum leap in water reclamation technology, Desalination, 225, 274, 10.1016/j.desal.2007.02.097

Sheikholeslami, 2009, Strategies for future research and development in desalination – challenges ahead, Desalination, 248, 218, 10.1016/j.desal.2008.05.058

Hoekstra, 2008

Uemura, 2008, Thin-film composite membranes for reverse osmosis, 3

Zhu, 2009, On RO membrane and energy costs and associated incentives for future enhancements of membrane permeability, J. Membr. Sci., 344, 1, 10.1016/j.memsci.2009.08.006

J.E. Cadotte, Evolution of Composite Reverse Osmosis Membranes, in: Materials Science of Synthetic Membranes. Based on a Symposium at the 187th Meeting of the American Chemical Society., ACS, St Louis, MO, USA, 1985, pp. 273-294.

Kumano, 2008, Cellulose Triacetate Membranes for Reverse Osmosis, 21

Hassler, 1949

Reid, 1959, Water and ion flow across cellulosic membranes, J. Appl. Polym. Sci., 1, 133, 10.1002/app.1959.070010202

S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, in: Saline Water Conversion - II, American Chemical Society, Washington, D. C., 1963, pp. 117–132.

S. Loeb, The Loeb-Sourirajan Membrane: How It Came About, in: Synthetic Membranes, American Chemical Society, Washington, D.C., 1981, pp. 1–9.

H.H. Hoehn, Aromatic polyamide membranes, in: materials science of synthetic membranes. Based on a Symposium at the 187th Meeting of the American Chemical Society., ACS, St. Louis, MO, USA, 1985, pp. 81–98.

L. Credali, G. Baruzzi, V. Guidotti, Reverse Osmosis Anisotropic Membranes Based on Polypiperazine Amides, Patent Application No. 4129559 (1978).

M. Senoo, S. Hara, S. Ozawa, Permselective Polymeric Membrane Prepared from Polybenzimidazoles, Patent Application No. 3951920 (1976).

H. Sekiguchi, F. Sato, K. Sadamitsu, K. Yoshida, Solute-Separating Membrane, Patent Application No. 4067804 (1978).

J.E. Cadotte, Evolution of Composite Reverse Osmosis Membranes, in: Materials Science of Synthetic Membranes. Based on a Symposium at the 187th Meeting of the American Chemical Society., ACS, St Louis, MO, USA, 1985, pp. 273–294.

Sudak, 1990, Reverse osmosis

King, 1970, High-retention reverse-osmosis desalination membranes from cellulose acetate

C.R. Cannon, P.A. Cantor, Mixed Esters Pf Cellulose, Patent Application No. 3585126 (1971).

Edgar, 2001, Advances in cellulose ester performance and application, Prog. Polym. Sci., 26, 1605, 10.1016/S0079-6700(01)00027-2

H.H. Hoehn, J.W. Richter, Aromatic Polyimide, Polyester and Polyamide Separation Membranes, Patent Application No. RE30351 (1980).

Beasley, 1977, The evaluation and selection of polymeric materials for reverse osmosis membranes, Desalination, 22, 181, 10.1016/S0011-9164(00)88374-5

Y.E. Kirsh, Y.M. Popkov, New Trends in the Development of Polymeric Materials for Reverse Osmosis Membranes Russian Chemical Reviews, 57 (1988).

Credali, 1971, Properties of piperazine homopolyamide films, Poly, 12, 717, 10.1016/0032-3861(71)90087-5

Credali, 1974, New polymer materials for reverse osmosis membranes, Desalination, 14, 137, 10.1016/S0011-9164(00)82047-0

Glater, 1994, The search for a chlorine-resistant reverse osmosis membrane, Desalination, 95, 325, 10.1016/0011-9164(94)00068-9

Parrini, 1983, Polypiperazinamides: new polymers useful for membrane processes, Desalination, 48, 67, 10.1016/0011-9164(83)80006-X

Brousse, 1976, New membranes for reverse osmosis I. Characteristics of the base polymer: sulphonated polysulphones, Desalination, 18, 137, 10.1016/S0011-9164(00)84098-9

M.D. Guiver, A.Y. Tremblay, C.M. Tam, Method of Manufacturing a Reverse Osmosis Membrane and the Membrane So Produced, Patent Application No. 4894159 (1990).

Himeshima, 1991, The major developments of the evolving reverse osmosis membranes and ultrafiltration membranes, Polym. J., 23, 513, 10.1295/polymj.23.513

Hara, 1977, Reverse osmosis membranes from aromatic polymers, Desalination, 21, 183, 10.1016/S0011-9164(00)80315-X

Murakami, 1981, Pbil Tubular Reverse Osmosis. Application as Low-Energy Concentrators, Industrial & Engineering Chemistry Product Research and Development, 20, 501, 10.1021/i300003a015

Congjie, 2003, Development and extension of seawater desalination by reverse osmosis, Chin. J. Oceanol. Limnol., 21, 40, 10.1007/BF02842760

F.S. Francis, Fabrication and Evaluation of New Ultra-Thin Reverse Osmosis Membranes, in, National Technical Information Services, 1966.

L.T. Rozelle, J.E. Cadotte, R.D. Corneliussen, E.E. Erickson, Final Report on Development of New Reverse Osmosis Membrane, in, 1968.

Riley, 1971, Composite membranes for seawater desalination by reverse osmosis, J. Appl. Polym. Sci., 15, 1267, 10.1002/app.1971.070150520

Reverse Osmosis Membrane, Patent Application No. 3926798 (1975).

Kurihara, 1980, Spiral-Wound New Thin Film Composite Membrane for a Single-Stage Seawater Desalination by Reverse Osmosis, Desalination, 32, 13, 10.1016/S0011-9164(00)86002-6

H. Yasuda, Reverse Osmosis Membranes Formed by Plasma Polymerization of Organic Compounds, Applied Polymer Symposia, (1973) 241-253.

Buck, 1970, Application of glow discharge polymerisation to the preparation of reverse osmosis, Membranes, 2, 238

Peric, 1976

Yasuda, 1976, Plasma Polymerization of Some Organic Compounds and Properties of the Polymers, Journal of Polymer Science, Polymer Chemistry Edition, 14, 195, 10.1002/pol.1976.170140118

Yasuda, 1975

Lai, 1990, Plasma-modified nylon 4 membranes for reverse osmosis desalination, J. Appl. Polym. Sci., 39, 2293, 10.1002/app.1990.070391109

Yasuda, 1975, Preparation of composite reverse osmosis membranes by plasma polymerization of organic compounds. Iii. Plasma polymers of acetylene/Co/H2O, J. Appl. Polym. Sci., 19, 2981, 10.1002/app.1975.070191104

Tran, 2008, Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization, Thin Solid Films, 516, 4384, 10.1016/j.tsf.2007.10.069

D.K. Schiffer, R.B. Davis, M.J. Coplan, Development of Composite Hollow Fibre Reverse Osmosis Systems, in, 1979.

Riley, 1976, Spiral-wound poly (ether/amide) thin-film composite membrane systems, Desalination, 19, 113, 10.1016/S0011-9164(00)88022-4

Naaktgeboren, 1988, Characterization of a new reverse osmosis composite membrane for industrial application, Desalination, 68, 223, 10.1016/0011-9164(88)80057-2

T. Kawaguchi, H. Minematsu, Y. Hayashi, S. Hara, F. Ueda, Amphoteric Ion-Permeable Composite Membrane, Patent Application No. 4360434 (1982).

P. Eriksson, Water and salt transport through two types of polyamide composite membranes, J. Membr. Sci., 36 (1988) 297-313.

J.E. Cadotte, Interfacially Synthesized Reverse Osmosis Membrane, Patent Application No. 4277344 (1981).

T. Uemura, Y. Himeshima, M. Kurihara, Interfacially Synthesized Reverse Osmosis Membrane, Patent Application No. 4761234 (1988).

S.A. Sundet, Production of Composite Membranes, Patent Application No. 4529646 (1985).

S.D. Arthur, Multilayer Reverse Osmosis Membrane of Polyamide-Urea, Patent Application No. 5019264 (1991).

Bartels, 1989, A surface science investigation of composite membranes, J. Membr. Sci., 45, 225, 10.1016/S0376-7388(00)80516-5

Mysels, 1991, Strength of interfacial polymerization films, Langmuir, 7, 3052, 10.1021/la00060a024

W.J. Wrasidlo, Semipermeable Membranes and the Method for the Preparation Thereof, Patent Application No. 4005012 (1977).

Riley, 1966, Spiral-wound thin-film composite membrane systems for brackish and seawater desalination by reverse osmosis, Desalination, 23, 331, 10.1016/S0011-9164(00)82535-7

Hickman, 1979, Jeddah seawater reverse osmosis installation, Desalination, 30, 259, 10.1016/S0011-9164(00)88453-2

Light, 1988, Desalination of non-chlorinated surface seawater using Tfcr membrane elements, Desalination, 70, 47, 10.1016/0011-9164(88)85043-4

J.E. Cadotte, Reverse Osmosis Membrane, Patent Application No. 4259183 (1981).

Kamiyama, 1984, New thin-film composite reverse osmosis membranes and spiral wound modules, Desalination, 51, 79, 10.1016/0011-9164(84)85054-7

Kurihara, 1991, Major developments of the evolving reverse osmosis membranes and ultrafiltration membranes, Polym. J., 23, 513, 10.1295/polymj.23.513

J-Y. Koo, R.J. Petersen, J.E. Cadotte, Esca Characterization of Chlorine-Damaged Polyamide Reverse Osmosis Membrane, in: Polymer Preprints. Papers Presented at the Anaheim, California Meeting., ACS, Anaheim, CA, USA, 1986, pp. 391-392.

Cadotte, 1980, A new thin-film composite seawater reverse osmosis membrane, Desalination, 32, 25, 10.1016/S0011-9164(00)86003-8

Kwak, 1999, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, J. Polym. Sci., Part B: Polym. Phys., 37, 1429, 10.1002/(SICI)1099-0488(19990701)37:13<1429::AID-POLB9>3.0.CO;2-B

Glater, 1983, Reverse osmosis membrane sensitivity to ozone and halogen disinfectants, Desalination, 48, 1, 10.1016/0011-9164(83)80001-0

Larson, 1981, The Ft-30 seawater reverse osmosis membrane--element test results, Desalination, 38, 473, 10.1016/S0011-9164(00)86092-0

Crowdus, 1984, System economic advantages of a low pressure, spiral RO system using thin composite membranes, Ultrapure Water, 1, 29

Light, 1987, Reverse osmosis TFC magnum elements for chlorinated/dechlorinated feedwater processing, Desalination, 64, 411, 10.1016/0011-9164(87)90113-5

J.E. Tomaschke, Interfacially Synthesized Reverse Osmosis Membrane Containing an Amine Salt and Processes for Preparing the Same, Patent Application No. 4948507 (1990).

T.K. Uemura, Himeshima, Yoshio, Kurihara, Masaru, Interfacially Synthesized Reverse Osmosis Membrane, Patent Application No. 4761234 (1988).

Sundet, 1987, Aromatic cycloaliphatic polyamide membrane, Desalination, 64, 259, 10.1016/0011-9164(87)90101-9

Jenkins, 1998, Operational experience with a new fouling resistant reverse osmosis membrane, Desalination, 119, 243, 10.1016/S0011-9164(98)00165-9

Antrim, 2005, Worlds largest spiral element - history and development, Desalination, 178, 313, 10.1016/j.desal.2004.11.042

Bartels, 2008, Performance advancement in the spiral wound RO/NF element design, Desalination, 221, 207, 10.1016/j.desal.2007.01.077

Matsuura, 2001, Progress in membrane science and technology for seawater desalination - a review, Desalination, 134, 47, 10.1016/S0011-9164(01)00114-X

Hirose, 1996, Effect of skin layer surface structures on the flux behaviour of RO membranes, J. Membr. Sci., 121, 209, 10.1016/S0376-7388(96)00181-0

Mi, 2006, Physico-chemical characterization of NF/RO membrane active layers by rutherford backscattering spectrometry, J. Membr. Sci., 282, 71, 10.1016/j.memsci.2006.05.015

Zhang, 2007, Partitioning of salt ions in Ft30 reverse osmosis membranes, Appl. Phys. Lett., 91, 181903, 10.1063/1.2802562

Coronell, 2008, Quantification of functional groups and modeling of their ionization behavior in the active layer of Ft30 reverse osmosis membrane, Environ. Sci. Technol., 42, 5260, 10.1021/es8002712

Coronell, 2010, Ionization behavior, Stoichiometry of Association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes, Environ. Sci. Technol., 44, 6808, 10.1021/es100891r

Tang, 2009, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. Ftir and Xps characterization of polyamide and coating layer chemistry, Desalination, 242, 149, 10.1016/j.desal.2008.04.003

Tang, 2009, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: Ii. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242, 168, 10.1016/j.desal.2008.04.004

Tang, 2007, Probing the nano- and micro-scales of reverse osmosis membranes--a comprehensive characterization of physiochemical properties of uncoated and coated membranes by Xps, Tem, Atr-Ftir, and streaming potential measurements, J. Membr. Sci., 287, 146, 10.1016/j.memsci.2006.10.038

Cahill, 2008, Microscopy microanalysis of reverse-osmosis and nanofiltration membranes, Material Research Society, 33, 27, 10.1557/mrs2008.11

Kim, 2000, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci., 165, 189, 10.1016/S0376-7388(99)00232-X

Li, 2008, Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and M-phenylenediamine, J. Membr. Sci., 315, 20, 10.1016/j.memsci.2008.02.022

Roh, 1998, Effects of the polyamide molecular structure on the performance of reverse osmosis membranes, J. Polym. Sci., Part B: Polym. Phys., 36, 1821, 10.1002/(SICI)1099-0488(199808)36:11<1821::AID-POLB3>3.0.CO;2-T

Moon, 2004, Novel composite membranes prepared from 2,2 bis [4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane, triethylene glycol dimethacrylate, and their mixtures for the reverse osmosis process, J. Membr. Sci., 243, 311, 10.1016/j.memsci.2004.07.002

Mukherjee, 1996, Chemical treatment for improved performance of reverse osmosis membranes, Desalination, 104, 239, 10.1016/0011-9164(96)00047-1

W.E. Mickols, Method of Treating Polyamide Membranes to Increase Flux, Patent Application No. 5755964 (1998).

Kuehne, 2001, Flux enhancement in TFC RO membranes, Environ. Prog., 20, 23, 10.1002/ep.670200112

Pinnau, 1999, Formation modification of polymeric membranes: overview, ACS Symp. Ser., 744, 1, 10.1021/bk-2000-0744.ch001

C.N. Tran, A.C. Maldonado, R. Somanathan, Thin-Film Composite Membrane, Patent Application No. 5234598 (1993).

H. Hachisuka, K. Ikeda, Composite Reverse Osmosis Membrane Having a Separation Layer with Polyvinyl Alcohol Coating and Method of Reverse Osmotic Treatment of Water Using the Same, Patent Application No. 6177011 (2001).

Gerard, 1998, New membrane developments expanding the horizon for the application of reverse osmosis technology, Desalination, 119, 47, 10.1016/S0011-9164(98)00102-7

Hydranautics’ Lfc3-Ld Makes Its Début, Membrane Technology, 2005 (2005) 3-3.

Wilf, 2000, Application of low fouling RO membrane elements for reclamation of municipal wastewater, Desalination, 132, 11, 10.1016/S0011-9164(00)00130-2

Kang, 2007, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane, J. Membr. Sci., 300, 165, 10.1016/j.memsci.2007.05.025

Sarkar, 2010, Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes, J. Membr. Sci., 349, 421, 10.1016/j.memsci.2009.12.005

Louie, 2006, Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes, J. Membr. Sci., 280, 762, 10.1016/j.memsci.2006.02.041

Mukherjee, 1994, Flux enhancement of reverse osmosis membranes by chemical surface modification, J. Membr. Sci., 97, 231, 10.1016/0376-7388(94)00165-U

Kulkarni, 1996, Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes, J. Membr. Sci., 114, 39, 10.1016/0376-7388(95)00271-5

Wu, 1997, Plasma modification of aromatic polyamide reverse osmosis composite membrane surface, J. Appl. Polym. Sci., 64, 1923, 10.1002/(SICI)1097-4628(19970606)64:10<1923::AID-APP6>3.0.CO;2-K

Gil’man, 2003, Low-temperature plasma treatment as an effective method for surface modification of polymeric materials, High Energ. Chem., 37, 17, 10.1023/A:1021957425359

Lin, 2010, Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance, JMCh, 20, 4642

Song, 2005, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci., 251, 67, 10.1016/j.memsci.2004.10.042

Karode, 1998, New insights into kinetics and thermodynamics of interfacial polymerization, Chem. Eng. Sci., 53, 2649, 10.1016/S0009-2509(98)00083-9

Dhumal, 2008, Interfacial polycondensation - modeling of kinetics and film properties, J. Membr. Sci., 325, 758, 10.1016/j.memsci.2008.09.002

Ghosh, 2008, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, J. Membr. Sci., 311, 34, 10.1016/j.memsci.2007.11.038

Ghosh, 2009, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes, J. Membr. Sci., 336, 140, 10.1016/j.memsci.2009.03.024

M.M. Chau, W.G. Light, H.C. Chu, Dry High Flux Semipermeable Membranes, Patent Application No. 4983291 (1991).

J-Y. Koo, N. Kim, Composite Polyamide Reverse Osmosis Membrane and Method of Producing the Same, Patent Application No. 6015495 (2000).

M. Hirose, K. Ikeda, Method of Producing High Permeable Composite Reverse Osmosis Membrane, Patent Application No. 5576057 (1996).

M.S. Hirose, Ito, Hiroki, Maeda, Masatoshi, Tanaka, Kazuo, Highly Permeable Composite Reverse Osmosis Membrane, Method of Producing the Same, and Method of Using the Same, Patent Application No. 5614099 (1997).

J-Y. Koo, Y.S. Yoon, Composite Polyamide Reverse Osmosis Membrane and Method of Producing the Same, Patent Application No. 6063278 (2000).

Kwak, 2001, Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 35, 4334, 10.1021/es010630g

Kim, 2005, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 39, 1764, 10.1021/es049453k

Kwak, 1999, Use of atomic force microscopy and solid-state Nmr spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (RO) membranes, J. Membr. Sci., 158, 143, 10.1016/S0376-7388(99)00039-3

W.E. Mickols, Composite Membrane and Method for Making the Same, Patent Application No. 6878278 (2005).

W.E. Mickols, Composite Membrane and Method for Making the Same, Patent Application No. 6337018 (2002).

Mauter, 2008, Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol., 42, 5843, 10.1021/es8006904

Lu, 2007, Nanofiltration membranes based on rigid star amphiphiles, Chem. Mater., 19, 3194, 10.1021/cm070200a

Suzuki, 2007, Performance characterization of nanofiltration membranes based on rigid star amphiphiles, Environ. Sci. Technol., 41, 6246, 10.1021/es070157s

C.A.M. Siskens, Chapter 13 Applications of Ceramic Membranes in Liquid Filtration, in: A.J. Burggraaf, L. Cot (Eds.) Membrane Science and Technology, Elsevier, 1996, pp. 619–639.

A.K. Pabby, S.S.H. Rizvi, A.M. Sastre, Handbook of Membrane Separations: Chemical, Pharmaceutical Food and Biotechnological Applications, in, CRC Press, Boca Raton, 2009.

Gazagnes, 2007, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination, 217, 260, 10.1016/j.desal.2007.01.017

Duke, 2007, Performance of porous inorganic membranes in non-osmotic desalination, Water Res., 41, 3998, 10.1016/j.watres.2007.05.028

Kujawski, 2007, Pervaporation properties of fluoroalkylsilane (Fas) grafted ceramic membranes, Desalination, 205, 75, 10.1016/j.desal.2006.04.042

Lia, 2004, Reverse osmosis of ionic aqueous solutions on Amfi zeolite membrane, Desalination, 170, 309, 10.1016/j.desal.2004.02.102

Lin, 2001, A computer simulation study of the separation of aqueous solutions using thin zeolite membranes, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 99, 1175, 10.1080/00268970110041236

C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of Zeolite Framework Types, 6th ed., Elsevier, Amsterdam, 2007.

Li, 2004, Desalination by reverse osmosis using Mfi zeolite membranes, J. Membr. Sci., 243, 401, 10.1016/j.memsci.2004.06.045

Jareman, 2003, Effects of aluminum content on the separation properties of Mfi membranes, Sep. Purif. Technol., 32, 159, 10.1016/S1383-5866(03)00029-7

Duke, 2009, Seawater desalination performance of Mfi type membranes made by secondary growth, Sep. Purif. Technol., 68, 343, 10.1016/j.seppur.2009.06.003

Li, 2007, Enhanced water permeation of reverse osmosis through Mfi-type zeolite membranes with high aluminum contents, Industrial & Engineering Chemistry Research, 46, 1584, 10.1021/ie0612818

Liu, 2008, Removal of organics from produced water by reverse osmosis using Mfi-type zeolite membranes, J. Membr. Sci., 325, 357, 10.1016/j.memsci.2008.07.056

J. Lu, N. Liu, L. Li, R. Lee, Organic fouling and regeneration of zeolite membrane in wastewater treatment, Sep. Purif. Technol., In Press, Corrected Proof.

Gogotsi, 2003, Nanoporous carbide-derived carbon with tunable pore size, Nat. Mater., 2, 591, 10.1038/nmat957

Hoffman, 2008, Carbide-derived carbon membrane, MCP, 112, 587, 10.1016/j.matchemphys.2008.06.006

S. Kulprathipanja, R.W. Neuzil, N.N. Li, Separation of Fluids by Means of Mixed Matrix Membranes, Patent Application No. 4740219 (1988).

Okumus, 1994, Development of a mixed-matrix membrane for pervaporation, Sep. Sci. Technol., 29, 2451, 10.1080/01496399408002203

A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz, Transport and Separation Properties of Carbon Nanotube-Mixed Matrix Membrane, Sep. Purif. Technol., In Press, Corrected Proof.

Sunada, 1998, Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol., 32, 726, 10.1021/es970860o

Kim, 2003, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 211, 157, 10.1016/S0376-7388(02)00418-0

Kwak, 2001, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol., 35, 2388, 10.1021/es0017099

Jeong, 2007, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes, J. Membr. Sci., 294, 1, 10.1016/j.memsci.2007.02.025

Lind, 2009, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir, 25, 10139, 10.1021/la900938x

Noy, 2007, Nanofluidics in carbon nanotubes, Nano Today, 2, 22, 10.1016/S1748-0132(07)70170-6

Hinds, 2004, Aligned multiwalled carbon nanotube membranes, Sci, 303, 62, 10.1126/science.1092048

Majumder, 2005, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, 44, 10.1038/438044a

Holt, 2006, Fast mass transport through Sub-2-nanometer carbon nanotubes, Science, 312, 1034, 10.1126/science.1126298

Whitby, 2008, Enhanced fluid flow through nanoscale carbon pipes, Nano Lett., 8, 2632, 10.1021/nl080705f

Holt, 2009, Carbon nanotubes and nanofluidic transport, Adv. Mater., 21, 3542, 10.1002/adma.200900867

Mattia, 2008, Review: static and dynamic behavior of liquids inside carbon nanotubes, Microfluid. Nanofluid., 5, 289, 10.1007/s10404-008-0293-5

Striolo, 2006, The mechanism of water diffusion in narrow carbon nanotubes, Nano Lett., 6, 633, 10.1021/nl052254u

Joseph, 2008, Why are carbon nanotubes fast transporters of water?, Nano Lett., 8, 452, 10.1021/nl072385q

Thomas, 2008, Reassessing fast water transport through carbon nanotubes, Nano Lett., 8, 2788, 10.1021/nl8013617

Hummer, 2001, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, 188, 10.1038/35102535

Kalra, 2003, Osmotic water transport through carbon nanotubes membranes, PNAS, 100, 10175, 10.1073/pnas.1633354100

Kotsalis, 2004, Multiphase water flow inside carbon nanotubes, Int. J. Multiphase Flow, 30, 995, 10.1016/j.ijmultiphaseflow.2004.03.009

Francesco Fornasieroa, 2008, Ion exclusion by Sub-2-Nm carbon nanotube pores, Proc. Natl. Acad. Sci. U. S. A., 105, 17250, 10.1073/pnas.0710437105

Majumder, 2005, Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes, J. Am. Chem. Soc., 127, 9062, 10.1021/ja043013b

Majumder, 2007, Voltage gated carbon nanotube membranes, Langmuir, 23, 8624, 10.1021/la700686k

Corry, 2007, Designing carbon nanotube membranes for efficient water desalination, The Journal of Physical Chemistry B, 112, 1427, 10.1021/jp709845u

Suk, 2008, Fast reverse osmosis using boron nitride and carbon nanotubes, Appl. Phys. Lett., 92, 133120, 10.1063/1.2907333

T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with Embedded Nanotubes for Selective Permeability, Patent Application No. 20100025330 (2010).

Agre, 2005, Membrane water transport and aquaporins: looking back, Biol. Cell, 97, 355, 10.1042/BC20050027

Kumar, 2007, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z, PNAS, 104, 20719, 10.1073/pnas.0708762104

González-Pérez, 2009, Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins, Langmuir, 25, 10447, 10.1021/la902417m

Taubert, 2007, Controlling water transport through artificial polymer/protein hybrid membranes, PNAS, 104, 20643, 10.1073/pnas.0710864105

Kaufman, 2010, Supported lipid bilayer membranes for water purification by reverse osmosis, Langmuir, 26, 7388, 10.1021/la904411b

P.H. Jensen, D. Keller, C.H. Nielsen, Membrane for Filtering of Water, Patent Application No. EP1885477 (2010).

http://www.nanocs.com/nanotube.htm, visited on 19 October 2010.