A review of real-time multi-GNSS precise orbit determination based on the filter method

Yidong Lou1, Xiaolei Dai1, Xiaopeng Gong1, Chenglong Li1, Yun Qing2, Yang Liu3, Yunfeng Peng1, Shengfeng Gu1
1GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan, Hubei, China
2Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China
3First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

Tóm tắt

AbstractStable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance. In general, the positioning accuracy depends strongly on the quality of satellite orbit and clock products, especially for absolute positioning modes, such as Precise Point Positioning (PPP). With the development of real-time services, real-time Precise Orbit Determination (POD) is indispensable and mainly includes two methods: the ultra-rapid orbit prediction and the real-time filtering orbit determination. The real-time filtering method has a great potential to obtain more stable and reliable products than the ultra-rapid orbit prediction method and thus has attracted increasing attention in commercial companies and research institutes. However, several key issues should be resolved, including the refinement of satellite dynamic stochastic models, adaptive filtering for irregular satellite motions, rapid convergence, and real-time Ambiguity Resolution (AR). This paper reviews and summarizes the current research progress in real-time filtering POD with a focus on the aforementioned issues. In addition, the real-time filtering orbit determination software developed by our group is introduced, and some of the latest results are evaluated. The Three-Dimensional (3D) real-time orbit accuracy of GPS and Galileo satellites is better than 5 cm with AR. In terms of the convergence time and accuracy of kinematic PPP AR, the better performance of the filter orbit products is validated compared to the ultra-rapid orbit products.

Từ khóa


Tài liệu tham khảo

Allahvirdi-Zadeh, A., Wang, K., & El-Mowafy, A. (2021). POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections. GPS Solutions, 25, 31. https://doi.org/10.1007/s10291-020-01078-8

Andrea, S., Peter, N., Wolfgang S., (2020) The IGS real time service: status and developments. In: Symposium SIRGAS2020, virtual, October, 2020.

Arnold, D., Meindl, M., Beutler, G., et al. (2015). CODE’s new solar radiation pressure model for GNSS orbit determination. Journal of Geodesy, 89, 775–791. https://doi.org/10.1007/s00190-015-0814-4

Bertiger, W., Bar-Sever, Y., Bokor, E., et al. (2012). First orbit determination performance assessment for the OCX navigation software in an operational environment. Proceedings of the ION GNSS 2012, Nashville, Tennessee, USA, Sept. 2012.

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66, 469–489.

Bertiger, W., Bar-Sever, Y., Haines, B., Iijima, B., et al. (1997). A real-time wide area differential GPS system. Navigation: Journal of the Institute of Navigation, 44(4), 433–447.

Bierman, G. (1977). Factorization methods for discrete sequential estimation. New York, San Francisco, London: Academic Press.

Blewitt, G. (1989). Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. Journal of Geophysical Research, 94(B8), 10187–10203.

Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202.

Chen, X., Allison, T., Cao, W., Ferguson, K., Grunig, S., Gomez, V., Kipka, A., Kohler, J., Landau, H., Leandro, R., Lu, G. (2011). Trimble RTX, an innovative new approach for network RTK. InProceedings of the 24th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2011) Sep 23 (pp. 2214–2219).

Choi, K. K., Ray, J., Griffiths, J., & Bae, T. S. (2013). Evaluation of GPS orbit prediction strategies for the IGS ultra-rapid products. GPS Solutions, 17(3), 403–412.

Collins, P., Lahaye, F., Heroux, P., Bisnath, S. (2008). Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st international technical meeting of the satellite division of the institute of navigation. Savannah, GA, pp 1315–1322.

Dai, X. (2016). Real-time precise GNSS satellite orbit determination using the SRIF method: theory and implemencation. Ph.D. Thesis, Wuhan University, China.

Dai, X., Dai, Z., Lou, Y., Li, M., Qing, Y. (2018). The Filtered GNSS Real-time Precise Orbit Solution. In Proceedings of the 9th China Satellite Navigation Conference (CSNC 2018) (pp. 317–326).

Dai, X., Gong, X., Li, C., Qing, Y., Gu, S., Lou, Y. (2021). Real-time precise orbit and clock estimation of multi-GNSS satellites with undifferenced ambiguity resolution. Journal of Geodesy (under review).

Dai, X., Lou, Y., Dai, Z., Qing, Y., Li, M., & Shi, C. (2019). Real-time precise orbit determination for BDS satellites using the square root information filter. GPS Solutions, 23(2), 1–14. https://doi.org/10.1007/s10291-019-0827-1

Dai, Z., Dai, X., Zhao, Q., & Liu, J. (2019). Improving real-time clock estimation with undifferenced ambiguity fixing. GPS Solutions, 23(2), 1–12. https://doi.org/10.1007/s10291-019-0837-z

Dixon, K., (2006). StarFire: A Global SBAS for Sub-Decimeter Precise Point Positioning. In Proceedings of the 19th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2006) (pp. 2286–2296).

Dow, J., Martin Mur, T., Feltens, J., et al. (1993). The ESOC GPS Facility: Report on the IGS 1992 Campaign and Outlook. Proceedings of the 1993 IGS Workshop, pp. 133–144.

Du, L., (2006). A study on the precise orbit determination of geostationary satellites. Ph.D. Thesis, Information Engineering University, China.

Duan, B., Hugentobler, U., Chen, J., Selmke, I., & Wang, J. (2019). Prediction versus real-time orbit determination for GNSS satellites. GPS Solutions, 23, 39. https://doi.org/10.1007/s10291-019-0834-2

Enge, P., Walter, T., Pullen, S., et al. (1996). Wide area augmentation of the global positioning system. Proceedings of the IEEE, 84(8), 1063–1088.

Fan, L., Shi, C., & Li, M. (2018). BeiDou satellite real-time precise orbit determination using ultra-rapid ephemeris’ constraint. Journal of Geodesy and Geodynamics, 38(9), 937–942.

Fu, W., Huang, G., Zhang, Q., Gu, S., Ge, M., & Schuh, H. (2019). Multi-GNSS real-time clock estimation using sequential least square adjustment with online quality control. Journal of Geodesy, 93(7), 963–976.

Fu, W., Yang, Y., Zhang, Q., & Huang, G. (2018). Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares. Advances in Space Research, 62(2), 477–487.

Ge, M., Gendt, G., Dick, G., et al. (2006). A new data processing strategy for huge GNSS global networks. Journal of Geodesy, 80(4), 199–203. https://doi.org/10.1007/s00190-006-0044-x

Ge, M., Gendt, G., Dick, G., & Zhang, F. P. (2005). Improving carrier-phase ambiguity resolution in global GPS network solutions. Journal of Geodesy, 79(1–3), 103–110. https://doi.org/10.1007/s00190-005-0447-0

Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0187-4

Geng, J., & Mao, S. (2021). Massive GNSS network analysis without baselines: undifferenced ambiguity resolution. Journal of Geophysical Research: Solid Earth, 126(10), e2020JB021558. https://doi.org/10.1029/2020JB021558

Geng, J., Meng, X., Dodson, A., & Teferle, F. (2010). Integer ambiguity resolution in precise point positioning: Method comparison. Journal of Geodesy, 84, 569–581.

Geng, J., Shi, C., Ge, M., Dodson, A., Lou, Y., Zhao, Q., & Liu, J. (2012). Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. Journal of Geodesy, 86(8), 579–589.

Glocker, M., Landau, H., Leandro, R., Nitschke, M. (2012). Global precise multi-GNSS positioning with trimble centerpoint RTX. In: 2012 6th ESA workshop on satellite navigation technologies and european workshop on GNSS signals and signal processing, (NAVITEC). pp 1–8.

Gong, X., Gu, S., Lou, Y., Zheng, F., Ge, M., & Liu, J. (2018). An efficient solution of real-time data processing for multi-GNSS network. Journal of Geodesy, 92(7), 797–809.

Gong, X., Gu, S., Zheng, F., Wu, Q., Liu, S., Lou, Y. (2021) Improving GPS and Galileo precise data processing based on calibration of signal distortion bias. Measurement, 174, 108981.

Guo, R., Li, X. J., Zhou, J. H., Liu, L., & Huang, Y. (2013). Precise orbit determination for the GEO satellite maneuver based on the thrust force model. Journal of Geomatics Science and Technology, V30(5), 465–470.

Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93–105.

Huang, Y., Hu, X. G., Huang, C., Yang, Q. W., & Jiao, W. H. (2008). Using CAPS ranging data to determine the orbit of GEO satellite during its orbit change. Science in China (Series G: Physics, Mechanics and Astronomy), 38(12), 1750–1758.

Jaggi, A., Montenbruck, O., Moon, Y., et al. (2012). Inter-agency comparison of TanDEM-X baseline solutions. Advances in Space Research, 50(2), 260–271. https://doi.org/10.1016/j.asr.2012.03.027

Kazmierski, K., Sośnica, K., & Hadas, T. (2018). Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solutions, 22, 11. https://doi.org/10.1007/s10291-017-0678-6

Kazmierski, K., Zajdel, R. & Sośnica, K (2020) Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS Solutions 24, 111. https://doi.org/10.1007/s10291-020-01026-6.

Kuang, K., Li, J., Zhang, S., et al. (2021). Improve real-time GNSS orbit with epoch-independent undifferenced ambiguity resolution. Advances in Space Research, 68(11), 4544–4555. https://doi.org/10.1016/j.asr.2021.08.021

Laurichesse, D., Mercier, F., (2007). Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and its Application to PPP. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation. Fort Worth, TX, pp 839–848.

Laurichesse, D., Cerri, L., Berthias, P., Mercier, F. (2013). Real time precise GPS constellation and clocks estimation by means of a Kalman filter. In: Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), Nashville, TN, September 2013, pp. 1155–1163.

Leandro, R., Landar, H., Nitschke, M., Glocker, M., Seeger, S., Chen, X. et al. (2011). Trimble TerraSat GmbH, Germany (2011) RTX Positioning: the Next Generation of cm-accurate Real-time GNSS Positioning, Paper presented at ION-GNSS-2011, September 20–23, 2011, Portland, OR, USA.

Li, X., Chen, X., Ge, M., & Schuh, H. (2018). Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning. Journal of Geodesy, 93(1), 45–64. https://doi.org/10.1007/s00190-018-1138-y

Li, X., Xiong, Y., Yuan, Y., et al. (2019). Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution. Journal of Geodesy, 93, 2515–2528. https://doi.org/10.1007/s00190-019-01312-3

Li, Y., Gao, Y., & Li, B. (2014). An impact analysis of arc length on orbit prediction and clock estimation for PPP ambiguity resolution. GPS Solutions, 19, 201–213. https://doi.org/10.1007/s10291-014-0380-x

Lichten, S. M., & Bertiger, W. I. (1987). (1987) Strategies for high-precision Global Positioning System orbit determination. Journal of Geophysical Research, 92(B12), 12751–12762.

Liu, Y., (2016). Research on key problems of multi-GNSS real-time precise positioning service. PhD Dissertation, Wuhan University.

Liu, Y., Liu, Y., Tian, Z., Dai, X., Qing, Y., & Li, M. (2019). Impact of ECOM solar radiation pressure models on multi-GNSS ultra-rapid orbit determination. Remote Sensing, 11(24), 3024.

Loh, R., Wullschleger, V., Elrod, B., et al. (1995). The US wide area augmentation system (WAAS). Navigation, 42(3), 435–465.

Lou, Y.(2008). Research on real-time precise GPS orbit and clock offset determination. Ph.D. Thesis, Wuhan University, China.

Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: Modern insights from FES2004. Ocean Dynamics, 56(5–6), 394–415.

Moon, Y., Koenig, R., Wermuth, M. (2012). Operational precise baseline determination for TanDEM-X DEM processing. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium at Munich, July 22–27, pp 1633–1636.

Muellerschoen, R., Reichert, A., Kuang, D., Heflin, M., Bertiger, W., Bar-Sever, Y. (2001) Orbit determination with NASA’s high accuracy real-time global differential GPS system. In: Proceedings of the ION GPS 2001, 11–14 September. Institute of Navigation, Salt Lake City, pp 2294–2303.

Muellerschoen, R. & Caissy, M. (2004). Real-time data flow and product generation for GNSS.10 years IGS Workshop, Berne, Switzerland, March 1–5, 2004.

GSA (2017) Galileo satellite metadata. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata, last access: 31 Oct. 2019

Parkinson, B., Spilker, J., Axelrad, P., Enge, P. (1996). Progress in Astronautics and Aeronautics: Global Positioning System: Theory and Applications. Reston, VA: AIAA.

Pavlis, N., Holmes, S., Kenyon, S., & Factor, J. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117(B4), B04406.

Petit, G., Luzum, B., (2010). IERS conventions (2010), Technical report, Bureau International des poids et mesures sevres (France).

Prange, L., Orliac, E., Dach, R., Arnold, D., Beutler, G., et al. (2017). CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. Journal of Geodesy, 91(4), 345–360.

Qiao J., & Chen W. (2018). Beidou satellite maneuver thrust force estimation for precise orbit determination. GPS Solutions, 22(2), 42.

Qing, Y. (2018). Rapid convergence of real-time precise orbit determination for BeiDou/GNSS satellites: method and key problem. Ph.D. Thesis, Wuhan University, China.

Qing, Y., Lou, Y., Liu, Y., Dai, X., & Cai, Y. (2018). Impact of the initial state on BDS real-time orbit determination filter convergence. Remote Sensing, 10(1), 111.

Rodriguez-Solano, C., Hugentobler, U., & Steigenberger, P. (2011). Solar radiation pressure and attitude modeling of GNSS satellites. AGU Fall Meeting Abstracts, 1, 0735.

Rodriguez-Solano, C. J., Hugentobler, U., & Steigenberger, P. (2012). Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Advances in Space Research, 49, 1113–1128. https://doi.org/10.1016/j.asr.2012.01.016

Saastamoinen, J. (1972). Contribution to the theory of atmospheric refraction. Bulletin Geodesique, 105(1), 279–298.

Song, X. (2009). Study on the orbit determination of COMPASS navigation satellites. Ph.D. Thesis, Chang’an University, China.

Song, W., Li, C., Dai, X., et al. (2022). BDS near real-time maneuver detection based on triple-differenced phase observations. Advances in Space Research, 69, 3032–3043. https://doi.org/10.1016/j.asr.2022.01.035

Springer, T., Beutler, G., & Rothacher, M. (1999). Improving the orbit estimates of GPS satellites. Journal of Geodesy, 73, 147–157. https://doi.org/10.1007/s001900050230.

Takasu, T. (2013). Development of multi-GNSS orbit and clock determination software. The 5th Asia Oceania Regional Workshop on GNSS, December 1–3, 2013, Hanoi University of Science and Technology.

Takasu, T., (2017). The development and application of PPP technology with multi-constellation GNSS, JpGU -AGU Joint Meeting 2017, May 20–25, 2017 Makuhari-Messe, Chiba, Japan.

Teunissen, P. J. G. (1990). Quality control in integrated navigation systems. IEEE Aerospace and Electronic Systems Magazine, 5(7), 35–41.

Teunissen, P. J. G. (1995). The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70, 65–82. https://doi.org/10.1007/BF00863419

Teunissen, P. J. G. (1998). Quality control and GPS. In P. J. G. Teunissen & A. Kleusberg (Eds.), GPS for geodesy (2nd ed., pp. 271–318). Springer.

Teunissen, P. J. G. (2018). Distributional theory for the DIA method. Journal of Geodesy, 92, 59–80. https://doi.org/10.1007/s00190-017-1045-7

Teunissen, P. J. G., & Khodabandeh, A. (2014). Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3), 217–240. https://doi.org/10.1007/s00190-014-0771-3

Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. (1993). Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica, 18, 91–98.

Xu, T. H., Jiang, N., & Sun, Z. Z. (2012). An improved adaptive sage filter with applications in GEO determination and GPS kinematic positioning. Science China Physics, Mechanics and Astronomy., 55(5), 892–898.

Yang, Y., Gao, W. (2006) An optimal adaptive Kalman filter. Journal of Geodesy, 80, 177–183. https://doi.org/10.1007/s00190-006-0041-0.

Yang, Y., He, H. & Xu, G. (2001) Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 75, 109–116. https://doi.org/10.1007/s001900000157.

Yang, Y., & Weng, Y. (2003). Satellite precise orbit integrated adaptive robust filtering technology. Science in China, 33(11), 1750–1758.

Ye F., Yuan Y., Tan B., Ou J. (2017) A robust method to detect BeiDou navigation satellite system orbit maneuvering/anomalies and its applications to precise orbit determination. Sensors, 17(5), 1129. https://doi.org/10.3390/s17051129.

Yoon, Y., Montenbruck, O., Kirschner, M. (2006). Precise maneuver calibration for remote sensing satellites. International Symposium on Space Flight Dynamics, 4th June to 11th June 2006, Kanazawa (Japan).

Yoon, Y. T., Eineder, M., Yague-Martinez, N., & Montenbruck, O. (2009). TerraSAR-X precise trajectory estimation and quality assessment. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1859–1868. https://doi.org/10.1109/TGRS.2008.2006983

Zhang, Q., Moore, P., Hanley, J., & Martin, S. (2007). Auto-BAHN: Software for near real-time GPS orbit and clock computations. Advances in Space Research, 39(2007), 1531–1538.

Zhang, S., Du, S., Li, W., & Wang, G. (2019). Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products. Sensors, 19, 2580. https://doi.org/10.3390/s19112580

Zhang, Y., Cao, J. F., Duan, J. F., Chen, M., & Duan, C. L. (2015). Orbit Dynamics Model Compensation and Implementation for Continuous Attitude Control of Chang’e 3 Probe. Journal of Astronautics, V36(5), 489–495.

Zhao, Q., Guo, J., Wang, C., et al. (2022). Precise orbit determination for BDS satellites. Satellite Navigation, 3, 2. https://doi.org/10.1186/s43020-021-00062-y

Zhiguo, D., Mathias, F., Thomas, N., & Markus, B. (2016). Multi-GNSS Ultra Rapid Orbit- Clock- & EOP-Product Series. GFZ Data Services. https://doi.org/10.5880/GFZ.1.1.2016.003

Zuo, X., Jiang, X., Li, P., et al. (2021). A square root information filter for multi-GNSS real-time precise clock estimation. Satellite Navigation, 2, 28. https://doi.org/10.1186/s43020-021-00060-0