A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application

Progress in Nuclear Energy - Tập 66 - Trang 13-24 - 2013
J.M. Tseng C.M. Shu S.H. Wu1,2, Jiyun Zhao1
1EXQUISITUS, Centre for E-City, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
2State Key Laboratory for the Strength and Vibration of Mechanics, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahn, 2012, A review on critical heat flux enhancement with nanofluids and surface modification, J. Heat Trans., 134, 024001, 10.1115/1.4005065

Ahn, 2010, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J. Multiphase Flow, 36, 375, 10.1016/j.ijmultiphaseflow.2010.01.004

Aladag, 2012, Experimental investigations of the viscosity of nanofluids at low temperatures, Appl. Energy, 97, 876, 10.1016/j.apenergy.2011.12.101

Avsec, 2008, The combined analysis of phonon and electron heat transfer mechanism on thermal conductivity for nanofluids, Int. J. Heat Mass Trans., 51, 4589, 10.1016/j.ijheatmasstransfer.2008.02.030

Bang, 2005, Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Trans., 48, 2407, 10.1016/j.ijheatmasstransfer.2004.12.047

Bianco, 2011, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, Int. J. Thermal Sci., 50, 341, 10.1016/j.ijthermalsci.2010.03.008

Boudouh, 2010, Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Appl. Thermal Eng., 30, 2619, 10.1016/j.applthermaleng.2010.06.027

Buongiorno, 2006, Convective transport in nanofluids, J. Heat Trans., 128, 240, 10.1115/1.2150834

Buongiorno, J., Hu, L.W., 2009. Nanofluid heat transfer enhancement for nuclear reactor applications, In: Proceedings of the ASME Micro/Nano Scale Heat and Mass Transfer International Conference, vol. 3, pp. 517–522.

Buongiorno, 2008, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gap, Nucl. Technol., 162, 80, 10.13182/NT08-A3934

Buongiorno, 2009, A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 094312, 10.1063/1.3245330

Chen, 2010, Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method, Nucl. Eng. Des., 240, 3830, 10.1016/j.nucengdes.2010.08.008

Chen, 2011, Surface tension of evaporating nanofluid droplets, Int. J. Heat Mass Trans., 54, 2459, 10.1016/j.ijheatmasstransfer.2011.02.016

Choi, 1995, 99

Choi, 2009, Nanofluids: from vision to reality through research, J. Heat Trans., 131, 1, 10.1115/1.3056479

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 153107, 10.1063/1.2093936

Corcione, 2011, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers. Manag., 52, 789, 10.1016/j.enconman.2010.06.072

Corcione, 2012, Heat transfer of nanofluids in turbulent pipe flow, Int. J. Thermal Sci., 56, 58, 10.1016/j.ijthermalsci.2012.01.009

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Trans., 125, 567, 10.1115/1.1571080

Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Trans., 46, 851, 10.1016/S0017-9310(02)00348-4

Das, 2003, Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 1237, 10.1016/S0301-9322(03)00105-8

Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev., 11, 797, 10.1016/j.rser.2005.06.005

Ding, 2007, Forced convective heat transfer of nanofluids, Adv. Powder Technol., 18, 813, 10.1163/156855207782515021

Dominguez-Ontiveros, 2010, Experimental observations of flow modifications in nanofluid boiling utilizing particle image velocimetry, Nucl. Eng. Des., 240, 299, 10.1016/j.nucengdes.2009.09.017

Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Thermal Fluid Sci., 33, 706, 10.1016/j.expthermflusci.2009.01.005

Duangthongsuk, 2010, An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, Int. J. Heat Mass Trans., 53, 334, 10.1016/j.ijheatmasstransfer.2009.09.024

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Escher, 2011, On the cooling of electronics with nanofluids, J. Heat Trans., 133, 051401, 10.1115/1.4003283

Feng, 2007, The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles, J. Phys. D: Appl. Phys., 40, 3164, 10.1088/0022-3727/40/10/020

Fotukian, 2010, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Trans., 37, 214, 10.1016/j.icheatmasstransfer.2009.10.003

Foygel, 2005, Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity, Phys. Rev. B, 71, 104201, 10.1103/PhysRevB.71.104201

Gupta, A., Wu, X., Ranganathan, K., 2006. Possible mechanisms for thermal conductivity enhancement in nanofluids. In: Proceedings of 4th International Conference on Nanochannels, Microchannels and Minichannel, pp. 987–995.

He, 2009, Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions, Appl. Thermal Eng., 29, 1965, 10.1016/j.applthermaleng.2008.09.020

Henderson, 2010, Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Trans., 53, 944, 10.1016/j.ijheatmasstransfer.2009.11.026

Heris, 2011, Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol–water nanofluids, Int. Commun. Heat Mass Trans., 38, 1470, 10.1016/j.icheatmasstransfer.2011.08.004

Heyhat, 2010, Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe, J. Heat Trans., 132, 062401, 10.1115/1.4000743

Hwang, 2009, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, Int. J. Heat Mass Trans., 52, 193, 10.1016/j.ijheatmasstransfer.2008.06.032

Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

Khanafer, 2011, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Trans., 54, 4410, 10.1016/j.ijheatmasstransfer.2011.04.048

Kim, 2007, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Trans., 50, 4105, 10.1016/j.ijheatmasstransfer.2007.02.002

Kim, 2008, Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure, J. Heat Trans., 130, 044501, 10.1115/1.2818787

Kim, 2009, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9, 119, 10.1016/j.cap.2008.12.047

Kim, 2009, Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids, J. Heat Trans., 131, 043204, 10.1115/1.3072924

Kim, 2010, On the mechanism of pool boiling critical heat flux enhancement in nanofluids, J. Heat Trans., 132, 061501, 10.1115/1.4000746

Kim, 2010, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Exp. Thermal Fluid Sci., 34, 487, 10.1016/j.expthermflusci.2009.05.006

Kim, 2010, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des., 240, 1186, 10.1016/j.nucengdes.2010.01.020

Kim, 2010, An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid, Int. J. Heat Mass Trans., 53, 1015, 10.1016/j.ijheatmasstransfer.2009.11.011

Kim, 2011, Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, Int. J. Heat Mass Trans., 54, 2021, 10.1016/j.ijheatmasstransfer.2010.12.029

Kole, 2012, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids, Appl. Thermal Eng., 37, 112, 10.1016/j.applthermaleng.2011.10.066

Koshizuka, 1996, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 421, 10.13182/NSE96-A24205

Krishna, 2011, Pool boiling characteristics of metallic nanofluids, J. Heat Trans., 133, 111501, 10.1115/1.4002597

Kwark, S.M., Kumar, R., Moreno, G., You, S.M., 2009. Transient characteristics of pool boiling heat transfer in nanofluids. In: Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, p. 18529.

Kwark, 2010, Nanocoating characterization in pool boiling heat transfer of pure water, Int. J. Heat Mass Trans., 53, 4579, 10.1016/j.ijheatmasstransfer.2010.06.035

Kumar, 2009, Effect of surface tension on nanotube nanofluids, Appl. Phys. Lett., 94, 073107, 10.1063/1.3085766

Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations, Int. J. Heat Mass Trans., 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

Lee, 2011, Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, Int. J. Heat Mass Trans., 54, 433, 10.1016/j.ijheatmasstransfer.2010.09.026

Liu, 2011, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Convers. Manag., 52, 292, 10.1016/j.enconman.2010.07.001

Lotfi, 2010, Numerical study of forced convective heat transfer of Nanofluids: comparison of different approaches, Int. Commun. Heat Mass Trans., 37, 74, 10.1016/j.icheatmasstransfer.2009.07.013

Maity, S., 2000. Effect of Velocity and Gravity on Bubble Dynamics. MD thesis, University of California, Los Angeles.

Milanova, 2008, Heat transfer behavior of silica nanoparticles in pool boiling experiment, J. Heat Trans., 130, 042401, 10.1115/1.2787020

Mintsa, 2009, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Thermal Sci., 48, 363, 10.1016/j.ijthermalsci.2008.03.009

Murshed, S.M.S., Nguyen, N.T., 2008. Characterization of temperature dependence of interfacial tension and viscosity of nanofluid. In: Proceedings of 2008 Micro/Nanoscale Heat Transfer International Conference, pp. 545–548.

Murshed, 2005, Enhanced thermal conductivity of TiO2–water-based nanofluids, Int. J. Thermal Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Murshed, 2009, A combined model for the effective thermal conductivity of nanofluids, Appl. Thermal Eng., 29, 2477, 10.1016/j.applthermaleng.2008.12.018

Na, Y.S., Lee, J.S., Kihm, K.D., 2011 The effective thermal conductivity of water-based alumina nanofluids in the fully developed laminar flow in a circular tube under a constant wall heat flux condition. In: Proceedings of the ASME/JSME 2011, 8th Thermal Engineering Joint Conference, p. 44659.

Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Thermal Fluid Sci., 32, 397, 10.1016/j.expthermflusci.2007.05.001

Namburu, 2009, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Thermal Sci., 48, 290, 10.1016/j.ijthermalsci.2008.01.001

Nguyen, 2008, Viscosity data for Al2O3–water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Thermal Sci., 47, 103, 10.1016/j.ijthermalsci.2007.01.033

Park, 2009, Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes, Int. J. Multiphase Flow, 35, 525, 10.1016/j.ijmultiphaseflow.2009.02.015

Peng, 2009, Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrigeration, 32, 1259, 10.1016/j.ijrefrig.2009.01.025

Pham, 2012, Enhancement of critical heat flux using nano-fluids for Invessel Retention-External Vessel Cooling, Appl. Thermal Eng., 35, 157, 10.1016/j.applthermaleng.2011.10.017

Phuoc, 2009, Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids, Int. J. Thermal Sci., 48, 1294, 10.1016/j.ijthermalsci.2008.11.015

Radiom, M., Yang, C., Chan, W.K., 2010. Characterization of surface tension and contact angle of nanofluids. In: Proceedings of Fourth International Conference on Experimental Mechanics, vol. 7522, 75221D.

Rea, 2009, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, Int. J. Heat Mass Trans., 52, 2042, 10.1016/j.ijheatmasstransfer.2008.10.025

Shukla, 2008, Effect of Brownian motion on thermal conductivity of nanofluids, J. Heat Trans., 130, 042406, 10.1115/1.2818768

Smalley, 2005, Future global energy prosperity: the terawatt challenge, MRS Bull., 30, 412, 10.1557/mrs2005.124

Taylor, 2009, Pool boiling of nanofluids: comprehensive review of existing data and limited new data, Int. J. Heat Mass Trans., 52, 5339, 10.1016/j.ijheatmasstransfer.2009.06.040

Taylor, R.A., Phelan, P.E., Otanicar, T.P., Tyagi, H., Trimble, S., 2010. Applicability of nanofluids in concentrated solar energy harvesting. In: Proceedings of the ASME 2010, 4th International Conference on Energy Sustainability, vol. 1, pp. 825–832.

Truong, B.H., 2007. Determination of pool boiling critical heat flux enhancement in nanofluids. In: Proceedings of 2007 ASME International Mechanical Engineering Congress and Exposition, p. 41697.

Vafaei, 2010, Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel, J. Heat Trans., 132, 102404, 10.1115/1.4001629

Vafaei, 2011, Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles, J. Nanoparticle Res., 13, 1063, 10.1007/s11051-010-0095-z

Vafaei, 2009, The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids, Nanotechnology, 20, 185702, 10.1088/0957-4484/20/18/185702

Vajjha, 2009, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Trans., 52, 4675, 10.1016/j.ijheatmasstransfer.2009.06.027

Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Trans., 13, 474, 10.2514/2.6486

Wen, 2008, Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF), Int. J. Heat Mass Trans., 51, 4958, 10.1016/j.ijheatmasstransfer.2008.01.034

Wen, 2004, Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, Int. J. Heat Mass Trans., 47, 5181, 10.1016/j.ijheatmasstransfer.2004.07.012

Wen, 2005, Experimental investigation into the pool boiling heat transfer of aqueous-based γ-alumina nanofluids, J. Nanoparticle Res., 7, 265, 10.1007/s11051-005-3478-9

Wen, 2009, Review of nanofluids for heat transfer applications, Particuology, 7, 141, 10.1016/j.partic.2009.01.007

Wen, 2011, Boiling heat transfer of nanofluids: the effect of heating surface modification, Int. J. Thermal Sci., 50, 480, 10.1016/j.ijthermalsci.2010.10.017

Williams, 2008, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Trans., 130, 042412, 10.1115/1.2818775

Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184

Xie, 2005, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, Int. J. Heat Mass Trans., 48, 2926, 10.1016/j.ijheatmasstransfer.2004.10.040

Xu, 2012, Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel, Int. J. Heat Mass Trans., 55, 5673, 10.1016/j.ijheatmasstransfer.2012.05.063

Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Trans., 125, 151, 10.1115/1.1532008

Xuan, Y.M., Li, Q., 2009. Energy transport mechanisms in nanofluids and its applications, In: Proceedings of the ASME 2009, 7th International Conference on Nanochannels, Microchannels and Minichannels, p. 82154.

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

Yang, 2011, Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures, Int. J. Thermal Sci., 50, 2402, 10.1016/j.ijthermalsci.2011.07.009

Yang, 2005, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Trans., 48, 1107, 10.1016/j.ijheatmasstransfer.2004.09.038

You, 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, 3374, 10.1063/1.1619206

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801

Zhu, D.S., Wu, S.Y., Wang, N., 2010. Surface tension and viscosity of aluminum oxide nanofluids. In: AIP Conference Proceedings, pp. 460–464.