Một đánh giá về các ứng dụng dựa trên công nghệ địa không gian trong khám phá khoáng sản

GeoJournal - Tập 88 - Trang 2889-2911 - 2022
Khadija Omar Said1, Moshood Onifade2, Praise Akinseye3, Peter Kolapo4, Jibril Abdulsalam5
1Mining and Mineral Processing Engineering Department, Taita Taveta University, Voi, Kenya
2Department of Civil and Mining Engineering, University of Namibia, Ongwediva, Namibia
3School of Mining Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
4Department of Mining Engineering, University of Kentucky, Lexington, USA
5DSI/NRF Clean Coal Technology Research Group, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa

Tóm tắt

Khi quá trình công nghiệp hóa tiếp tục phát triển trên toàn cầu, nhu cầu về tài nguyên khoáng sản cũng gia tăng đáng kể như là các yếu tố đầu vào quan trọng để thúc đẩy nhiều lĩnh vực thiết yếu như y tế, cơ sở hạ tầng, truyền thông và vận tải, trong số đó. Để đáp ứng những nhu cầu này, cần phải khám phá, khai thác và chế biến nhiều tài nguyên khoáng sản hơn. Trong những năm gần đây, thách thức mà các mỏ khoáng sản phần lớn đã được khai thác gần như hoàn toàn đã yêu cầu sử dụng các kỹ thuật nhanh chóng, hiệu quả và hiệu suất cao để phát hiện các nguồn tài nguyên khoáng sản mới. Mặc dù việc khám phá khoáng sản trước đây chủ yếu được thực hiện bằng các phương pháp thủ công, nhưng quá trình này theo thời gian đã chứng minh là tốn thời gian, tốn kém và dễ xảy ra lỗi, dẫn đến thiệt hại trong đầu tư. Do đó, nhằm tránh những nhược điểm như vậy, các nhà nghiên cứu và khoa học đã phát minh ra các phương pháp mới giúp giảm thiểu rủi ro trong khai thác, cải thiện hiệu quả sản xuất và giảm chi phí hoạt động. Một trong những phát minh như vậy là công nghệ địa không gian. Nghiên cứu này cung cấp một cái nhìn tổng quan chi tiết về sự phát minh và phát triển của công nghệ địa không gian và cách mà công nghệ này đã cách mạng hóa ngành khai thác. Để làm sáng tỏ sự phù hợp của công nghệ địa không gian trong khai thác, nghiên cứu này phân tích ứng dụng của nó trong khám phá khoáng sản, ước tính trữ lượng, thiết kế mỏ, tối ưu hóa vận chuyển vật liệu và thực thi an toàn. Dựa trên những đánh giá đó, rõ ràng là công nghệ địa không gian sẽ tiếp tục thúc đẩy phát triển công nghệ trong lĩnh vực khai thác, đặc biệt là trong kỷ nguyên trí tuệ nhân tạo để hỗ trợ việc ứng dụng robot trong các hoạt động khác nhau nhằm giảm chi phí hoạt động và thúc đẩy an toàn.

Từ khóa

#công nghệ địa không gian #khám phá khoáng sản #tối ưu hóa #an toàn #trí tuệ nhân tạo #tự động hóa

Tài liệu tham khảo

Abdelouhed, F., Algouti, A., Algouti, A., Mohammed, I., & Mourabit, Z. (2021). Contribution of gis and remote sensing in geological mapping, lineament extractions and hydrothermal alteration minerals mapping using aster satellite images: Case study of central jebilets-morocco. Disaster Advances., 14, 15–25. Agrawal, S., & Khairnar, G. B. (2019). A comparative assessment of remote sensing imaging techniques: Optical, sar and lidar. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. https://doi.org/10.5194/isprs-archives-XLII-5-W3-1-2019 Ali, E. (2020). Geographic Information System (GIS): Definition , Development , Applications & Components. In Academia. Arnous, M. O., ElMowafy, A. A., Azzaz, S. A., Omar, A. E., & Abdel Hafeez, W. M. (2021). Exploration radioactive mineralisation using mappable data integration approach: Example from Wadi Dahab area Southeastern Sinai Egypt. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-021-06781-5 Ashton, J. H., Beach, A., Blakeman, R. J., Coller, D., Henry, P., Lee, R., Hitzman, M., Hope, C., Huleatt-James, S., O’Donovan, B., & Philcox, M. E. (2019). Discovery of the Tara Deep Zn-Pb at the Boliden Tara Mine Success with Modern Seismic Surveys. Navan Ireland: In Metals, Minerals, and Society. https://doi.org/10.5382/sp.21.16 Baek, J., & Choi, Y. (2017). A new method for haul road design in open-pit mines to support efficient truck haulage operations. Applied Sciences (switzerland). https://doi.org/10.3390/app7070747 Baek, J., Choi, Y., Lee, C., Suh, J., & Lee, S. (2017). Bluetooth beacon-based underground navigation system to support mine haulage operations. Minerals., 7(11), 228. Baek, J., Choi, Y., & Park, H. S. (2016). Uncertainty representation method for open pit optimisation results due to variation in mineral prices. Minerals. https://doi.org/10.3390/min6010017 Baek, J., & Choi, Y. (2018). A new GIS-based algorithm to support initial transmitter layout design in Open-pit mines. Energies, 11(11), 3063. Banerjee, T. K., Supriyo, R., & Shubhamoy, D. (2014). A GIS solution for an integrated underground coal mine management: A conceptual framework. Journal of Management Policies and Practices., 2(2), 129–143. Bascompta, M., Castañón, A. M., Sanmiquel, L., & Oliva, J. (2016). A GIS-based approach: Influence of the ventilation layout to the environmental conditions in an underground mine. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.08.013 Bascompta Massanés, M., Sanmiquel Pera, L., & Oliva Moncunill, J. (2015). Ventilation management system for underground environments. Tunnelling and Underground Space Technology. https://doi.org/10.1016/j.tust.2015.09.001 Behera, S., Panigrahi, M. K., & Pradhan, A. (2019). Identification of geochemical anomaly and gold potential mapping in the Sonakhan Greenstone belt, Central India: An integrated concentration-area fractal and fuzzy AHP approach. Applied Geochemistry., 10, 45–57. Bipu, N. A. (2019). Geographic information system & spatial analysis. International Journal for Empirical Education and Research. https://doi.org/10.35935/edr/31.9070 Blachowski, J. (2014). Spatial analysis of the mining and transport of rock minerals (aggregates) in the context of regional development. Environmental Earth Sciences. https://doi.org/10.1007/s12665-013-2539-0 Butenuth, M., Frey, D., Nielsen, A. A., & Skriver, H. (2011). Infrastructure assessment for disaster management using multi-sensor and multi-temporal remote sensing imagery. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2010.542204 Caron, J., Durand, S., & Asselin, H. (2016). Principles and criteria of sustainable development for the mineral exploration industry. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.01.073 Carranza, E. J M. (2009). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In Handbook of Exploration and Environmental Geochemistry. https://doi.org/10.1016/S1874-2734(09)70004-X Carter, W. D. (1984). Remote sensing in geology - a decade of progress. Remote Sensing for Geological Mapping. Proc. Chai, Y., & Li, D. (2010). Research and design of personnel orientation system in mine based on GIS/MIS. Proceedings - 4th International Conference on Genetic and Evolutionary Computing, ICGEC 2010. https://doi.org/10.1109/ICGEC.2010.73 Chattoraj, S. L., Prasad, G., Sharma, R. U., Champati ray, P. K., van der Meer, F. D., Guha, A., & Pour, A. B. (2020). Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralisation in Alwar basin, Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation., 91, 102162. Chepa, N., Hashim, N. L., Yusof, Y., & Hussain, A. (2016). Adaptive emergency evacuation centre management for dynamic relocation of flood victims using firefly algorithm. Journal of Telecommunication, Electronic and Computer Engineering., 8(8), 115–119. Choi, Y., & Nieto, A. (2011). Optimal haulage routing of off-road dump trucks in construction and mining sites using Google Earth and a modified least-cost path algorithm. Automation in Construction. https://doi.org/10.1016/j.autcon.2011.03.015 Choi, Y., Park, H. D., Sunwoo, C., & Clarke, K. C. (2009). Multi-criteria evaluation and least-cost path analysis for optimal haulage routing of dump trucks in large scale open-pit mines. International Journal of Geographical Information Science. https://doi.org/10.1080/13658810802385245 Choi, Y., Yi, H., & Park, H. D. (2011). A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2010.07.008 Chrisman, N. (1988). The Risk of software innovation: A case study of the harvard lab. The American Cartographer., 15(3), 291–300. Chrisman, N. R. (2016). History of GIS. In Geography. https://doi.org/10.1093/obo/9780199874002-0143 Collier, P. (2020). Photogrammetry and Aerial Photography. In International Encyclopedia of Human Geography. https://doi.org/10.1016/b978-0-08-102295-5.10583-9 Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2014.02.013 Cranstone, D. (2002). A history of mining and mineral exploration in Canada and outlook for the future. In Natural Resources Canada. Craynon, J. R., Sarver, E. A., Ripepi, N. S., & Karmis, M. E. (2015). A GIS-based methodology for identifying sustainability conflict areas in mine design – a case study from a surface coal mine in the USA. International Journal of Mining, Reclamation and Environment. https://doi.org/10.1080/17480930.2015.1035872 Doan, S. (2021). Application of GIS-AI for Detecting Geological Structure and Prospective Zoning of Mineral Resources in Vanyen Area. European Association of Geoscientists and Engineers. Ehlers, M., Greenlee, D., Smith, T., & Star, J. (1991). Integration of remote sensing and GIS: Data and data access. Photogrammetric Engineering & Remote Sensing, 57(6), 669–675. Ehlers, M. (1990). Remote sensing and geographic information systems: Towards integrated spatial information processing. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.1990.573019 Foster, R. P. (2000). Destination Africa: New frontiers, new mineral exploration opportunities. International Mining and Minerals. Goldstein, B. D. (2012). John snow, the broad street pump and the precautionary principle. Environmental Development. https://doi.org/10.1016/j.envdev.2011.12.002 Goodchild, M. F. (2018). Reimagining the history of GIS. Annals of GIS. https://doi.org/10.1080/19475683.2018.1424737 Gorsevski, P. V., & Jankowski, P. (2008). Discerning landslide susceptibility using rough sets. Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2007.04.001 Grenon, M., & Hadjigeorgiou, J. (2010). Integrated structural stability analysis for preliminary open pit design. International Journal of Rock Mechanics and Mining Sciences. https://doi.org/10.1016/j.ijrmms.2009.11.001 Gu, Q. H., Lu, C. W., Li, F. B., & Wan, C. Y. (2008). Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS. Journal of China University of Mining and Technology. https://doi.org/10.1016/S1006-1266(08)60061-9 Gui, D., Cheng, P., Wen, H., & Zhang, C. (2019). Technology Innovation of Surveying, Mapping and Geoinformation for Natural Resource Management. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20180355 Haldar, S. K. (2018a). Chapter 15 - Mineral Exploration: Case Histories. In Mineral Exploration (Second Edition). Haldar, S. K. (2018b). Photogeology, remote sensing, and geographic information system in mineral exploration. In Mineral Exploration. https://doi.org/10.1016/b978-0-12-814022-2.00003-4 Hosseinali, F., & Alesheikh, A. A. (2008). Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences. https://doi.org/10.3844/ajassp.2008.1187.1198 Hronsky, J. M. A., & Groves, D. I. (2008). Science of targeting: Definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences. https://doi.org/10.1080/08120090701581356 Jackisch, R., Lorenz, S., Kirsch, M., Zimmermann, R., Tusa, L., Pirttijärvi, M., Saartenoja, A., Ugalde, H., Madriz, Y., Savolainen, M., & Gloaguen, R. (2020). Integrated geological and geophysical mapping of a carbonatite-hosting outcrop in siilinjärvi, finland, using unmanned aerial systems. Remote Sensing. https://doi.org/10.3390/RS12182998 Jebril, A. H., Hamza, M. H. M. M., & Al-Amri, M. A. (2018). Mineral exploration in rough mountainous area using geospatial technology (case study of Al Hajar area). Open Journal of Geology. https://doi.org/10.4236/ojg.2018.813072 Jha, S. S., Kumar, M., & Nidamanuri, R. R. (2020). Multi-platform optical remote sensing dataset for target detection. Data in Brief. https://doi.org/10.1016/j.dib.2020.106362 Jia, W., & Wang, G. (2019). Multiple level prospectivity mapping based on 3D GIS and multiple geoscience dataset analysis: A case study in Luanchuan Pb-Zn district China. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-019-4495-9 Jiang, N., & Hu, D. (2017). GIS for History: An Overview. In Comprehensive Geographic Information Systems. https://doi.org/10.1016/B978-0-12-409548-9.09726-8 Jingfang, B., & Zongxi, Y. (2012). The constructing of mineral exploration data management system based on spatial database. Advances in Information Sciences and Service Sciences. https://doi.org/10.4156/AISS.vol4.issue2.29 Kim, S. M., Choi, Y., & Park, H. D. (2018). New outlier top-cut method for mineral resource estimation via 3D hot spot analysis of borehole data. Minerals. https://doi.org/10.3390/min8080348 Kolapo, P., & Cawood, F. (2020). Factors to be considered in establishing a scanning laboratory fortesting the accuracy of terrestrial laser scanning technologies. International Journal of Mining and Mineral Engineering, 11(3), 180–190. Lechner, A. M., Devi, B., Schleger, A., Brown, G., McKenna, P., Ali, S. H., Rachmat, S., Syukril, M., & Rogers, P. (2017). A socio-ecological approach to GIS least-cost modelling for regional mining infrastructure planning: A case study from South-East Sulawesi Indonesia. Resources. https://doi.org/10.3390/resources6010007 Li, M., Zhang, X., & ping, Mao, S. jun, & Liu, Q. sheng. (2009). Study of deep mining safety control decision making system. Procedia Earth and Planetary Science. https://doi.org/10.1016/j.proeps.2009.09.060 Li, S., Dowd, P. A., & Birch, W. J. (2000). Application of a knowledge-and geographical information based system to the environment impact assessment of an opencast coal mining project. International Journal of Surface Mining, Reclamation and Environment. https://doi.org/10.1080/13895260008953336 Li, X., & Zhong, S. (2010). Digital mine design based on Data Warehouse and GIS. 2nd International Conference on Information Science and Engineering, ICISE2010 - Proceedings. https://doi.org/10.1109/ICISE.2010.5690531 Liu, H., & Yang, D. (2004). GIS-based mine ventilation network and safety analysis. International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2004.1370312 Li, M., Sun, Z., Jiang, Z., Tan, Z., & Chen, J. (2020). A virtual reality platform for safety training in coal mines with AI and cloud computing. Discrete Dynamics in Nature and Society, 2020, 1–7. Lupo, F., Reginster, I., & Lambin, E. F. (2001). Monitoring land-cover changes in west africa with spot vegetation: Impact of natural disasters in 1998–1999. International Journal of Remote Sensing. https://doi.org/10.1080/01431160117700 Macheyeki, A. S., Kafumu, D. P., Li, X., & Yuan, F. (2020). Applied geochemistry: Advances in mineral exploration techniques. In Applied Geochemistry: Advances in Mineral Exploration Techniques. Manuel, R., da Brito, M. G., Chichorro, M., & Rosa, C. (2017). Remote sensing for mineral exploration in central Portugal. Minerals., 7(10), 184. Masimalai, P. (2014). Remote sensing and geographic Information Systems (GIS) as the applied public health and environmental epidemiology. International Journal of Medical Science and Public Health. https://doi.org/10.5455/ijmsph.2014.081020141 McCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg, P., Imber, J., Holliman, N., & Trinks, I. (2005). Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork. Journal of the Geological Society. https://doi.org/10.1144/0016-764905-017 McCuaig, T. C., & Hronsky, J. (2017). The mineral systems concept: The key to exploration targeting. Applied Earth Science. https://doi.org/10.1080/03717453.2017.1306274 Mekonnen, S. Z. (2008). Geological and mineral potential mapping by geoscience data integration. In International Institute for Geo-Information Science and Earth Observation. Moridi, M. A., Kawamura, Y., Sharifzadeh, M., Chanda, E. K., Wagner, M., Jang, H., & Okawa, H. (2015). Development of underground mine monitoring and communication system integrated ZigBee and GIS. International Journal of Mining Science and Technology. https://doi.org/10.1016/j.ijmst.2015.07.017 Nelson, E. P., Connors, K. A., & Suárez, S. C. (2007). GIS-based slope stability analysis Chuquicamata open pit Copper Mine Chile. Natural Resources Research. https://doi.org/10.1007/s11053-007-9044-7 Ott, N., Kollersberger, T., & Tassara, A. (2006). GIS analyses and favorability mapping of optimised satellite data in northern Chile to improve exploration for copper mineral deposits. Geosphere. https://doi.org/10.1130/GES00017.1 Pandit, V., & Bhiwani, R. (2015). Image fusion in remote sensing applications: A review. International Journal of Computer Applications. https://doi.org/10.5120/21263-3846 Park, B., Choi, Y., & Park, H.-S. (2013). Creation of vector network data with considering terrain gradient for analysing optimal haulage routes of dump trucks in open pit mines. Journal of Korean Society for Rock Mechanics. https://doi.org/10.7474/tus.2013.23.5.353 Perkins, C. (2006). Book review: A place in history: A guide to using GIS in historical research. Progress in Human Geography. https://doi.org/10.1177/030913250603000116 Prakash, A., & Vekerdy, Z. (2004). Design and implementation of a dedicated prototype GIS for coal fire investigations in North China. International Journal of Coal Geology. https://doi.org/10.1016/j.coal.2003.12.009 Preciado Jeronimo, R., Rap, E., & Vos, J. (2015). The politics of land use planning: Gold mining in cajamarca Peru. Land Use Policy. https://doi.org/10.1016/j.landusepol.2015.07.009 Pun-Cheng, L. S. C. (2001). Knowing our customers: A quantitative analysis of geomatics students. International Research in Geographical and Environmental Education. https://doi.org/10.1080/10382040108667448 Radwanek, B. B. (2020). Tendencies of technical and technological innovation in mineral deposits exploration, mining and mineral processing. Przeglad Geologiczny. Rajesh, H. M. (2004). Application of remote sensing and GIS in mineral: Resource mapping - an overview. In Journal of Mineralogical and Petrological Sciences. https://doi.org/10.2465/jmps.99.83 Ricker, B. A., Rickles, P. R., Fagg, G. A., & Haklay, M. E. (2020). Tool, toolmaker, and scientist: Case study experiences using GIS in interdisciplinary research. Cartography and Geographic Information Science. https://doi.org/10.1080/15230406.2020.1748113 Rock, N. M. S. (1991). Progress in 1988–1990 with computer applications in the “hard-rock” arena: Geochemistry, mineralogy, petrology, and volcanology. Computers and Geosciences. https://doi.org/10.1016/0098-3004(91)90069-P Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2014). Near real-time prediction of U. S. corn yields based on time-series MODIS data. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2014.03.008 Şalap, S., Karslioǧlu, M. O., & Demirel, N. (2009). Development of a GIS-based monitoring and management system for underground coal mining safety. International Journal of Coal Geology. https://doi.org/10.1016/j.coal.2009.08.008 Shirazy, A. S., Shirazy, A., & Nazerian, H. (2021). Application of remote sensing in earth sciences – A review. International Journal of Science and Engineering Applications. https://doi.org/10.7753/ijsea1005.1001 Sinha, N., Deb, D., & Pathak, K. (2017). Development of a mining landscape and assessment of its soil erosion potential using GIS. Engineering Geology. https://doi.org/10.1016/j.enggeo.2016.10.012 Smith, D., Lutherborrow, C., Errock, C., & Pryor, T. (2011). Chasing the lead/zinc/silver lining - Establishing a resource model for the historic CML7, Broken Hill, New South Wales, Australia. 8th International Mining Geology Conference 2011, Proceedings. Sprague, K., de Kemp, E., Wong, W., McGaughey, J., Perron, G., & Barrie, T. (2006). Spatial targeting using queries in a 3-D GIS environment with application to mineral exploration. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2005.07.008 Steiner, B. M. (2019). Tools and workflows for grassroots Li-Cs-Ta (LCT) pegmatite exploration. Minerals. https://doi.org/10.3390/min9080499 Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2015.10.004 Uygucgil, H., & Konuk, A. (2015). Reserve estimation in multivariate mineral deposits using geostatistics and GIS. Journal of Mining Science. https://doi.org/10.1134/S1062739115050186 Waller, L. A. (2017). Mapping in public health. In Mapping across Academia. https://doi.org/10.1007/978-94-024-1011-2_9 Waters, N. (2017). GIS: History. In International Encyclopedia of Geography. https://doi.org/10.1002/9781118786352.wbieg0841 Wikantika, K., Sinaga, A., Hadi, F., & Darmawan, S. (2007). Quick assessment on identification of damaged building and land-use changes in the post-tsunami disaster with a quick-look image of IKONOS and Quickbird (a case study in Meulaboh City, Aceh). International Journal of Remote Sensing., 28(13–14), 3037–3044. https://doi.org/10.1080/01431160601091845 Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2021.106839 Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. In Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2019.103005 Yuan, Y. Bin, Zhang, F., Zhang, X. P., & Liang, X. (2010). Apply GIS to mineral exploration and the data management system based on GIS.In; 2010 2nd Conference on Environmental Science and Information Application Technology, ESIAT 2010. https://doi.org/10.1109/ESIAT.2010.5568929 Zareie, S., & Sherbakov, V. M. (2017). Natural resource zoning of Khuzestan Province of Iran using thermal remote sensing and geoinformation mapping. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa., 14(2), 110–121. Zhang, M. Y., Shan, L. Y., & Zhao, Z. P. (2011). The design of coal mine emergency rescue command information system based on Web GIS. In; 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011 - Proceedings. https://doi.org/10.1109/AIMSEC.2011.6010012 Zhao, P. (2015). Digital mineral exploration and quantitative evaluation in the big data age. Geological Bulletin of China., 34(07), 1255–1259.