A review of electrodes for the electrical brain signal recording

Springer Science and Business Media LLC - Tập 6 Số 3 - Trang 104-112 - 2016
Changkyun Im1, Jong-Mo Seo2,1
1Department of electrical and computer engineering, and Institute of Engineering, Seoul National University, Seoul, Republic of Korea
2Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Caton R. Electrical currents of the brain. J Nerv Ment Dis. 1875; 2(4): 610.

Haas LF. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg PS. 2003; 74(1): 9.

Woldring S, Dirken MN. Spontaneous unit-activity in the superficial cortical layers. Acta Physiol Pharm N. 1950; 1(3): 369–79.

Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959; 148(3): 574–91.

Marg E, Adams JE. Indwelling multiple micro-electrodes in the brain. Electroen Clin Neuro. 1967; 23(3): 277–80.

Asano E, Juhász C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT. Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia. 2005; 46(7): 1086–97.

Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 1–18.

Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 19–37.

Klee MR, Offenloch K, Tigges J. Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science. 1965; 147(3657): 519–21.

Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005; 116(4): 799–806.

Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J Clin Neurophysiol. 1994; 11(1): 111–3.

Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006.

Griss P, Enoksson P, Tolvanen-Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. J Microelectromech S. 2001; 10(1): 10–6.

Chiou J-C, Ko L-W, Lin C-T, Hong C-T, Jung T-P, Liang S-F, Jeng J-L. Using novel MEMS EEG sensors in detecting drowsiness application. Conf Proc IEEE Biomed Circuits Syst Soc. 2006; 33–6.

Ruffini G, Dunne S, Fuentemilla L, Grau C, Farrés E, Marco-Pallarés J, Watts PCP, Silva SRP. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensor Actuat A-Phys. 2008; 144(2): 275–9.

Huang YJ, Wu CY, Wong AMK, Lin BS. Novel active combshaped dry electrode for EEG measurement in hairy site. IEEE T Biomed Eng. 2015; 62(1): 256–63.

Chen Y-H, de Beeck MO, Vanderheyden L, Carrette E, Mihajlovic V, Vanstreels K, Grundlehner B, Gadeyne S, Boon P, Van Hoof C. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014; 14(12): 23758–80.

Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sensor Actuat A-Phys. 2012; 174: 96–102.

Grozea C, Voinescu CD, Fazli S. Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng. 2011; 8(2).

Liao L-D, Wang I-J, Chen S-F, Chang J-Y, Lin C-T. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors. 2011; 11(6): 5819–34.

Mota AR, Duarte L, Rodrigues D, Martins AC, Machado AV, Vaz F, Fiedler P, Haueisen J, Nóbrega JM, Fonseca C. Development of a quasi-dry electrode for EEG recording. Sensors Actuat A-Phys. 2013; 199: 310–7.

Peng H-L, Liu J-Q, Dong Y-Z, Yang B, Chen X, Yang C-S. Parylene-based flexible dry electrode for bioptential recording. Sensors Actuat B-Chem. 2016; 231: 1–11.

Harland CJ, Clark TD, Prance RJ. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. Appl Phys Lett. 2002; 81(17): 3284–6.

Sullivan TJ, Deiss SR, Cauwenberghs G. A low-noise, noncontact EEG/ECG sensor. Conf Proc IEEE Biomed Circ S Soc. 2007; 154–7.

Oehler M, Neumann P, Becker M, Curio G, Schilling M. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. Conf Proc IEEE Eng Med Biol Soc. 2008; 4495–8.

Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. Conf Proc IEEE Wearable Implantable Body Sens Netw. 2009; 246–50.

Renshaw B, Forbes A, Morison BR. Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol. 1940; 3(1): 74–105.

Dowben RM, Rose JE. A metal-filled microelectrode. Science. 1953; 118(3053): 22–4.

Green JD. A simple microelectrode for recording from the central nervous system. Nature. 1958; 182(4640): 962.

Wolbarsht ML, Macnichol EF, Wagner HG. Glass insulated platinum microelectrode. Science. 1960; 132(3436): 1309–10.

Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003; 31(7): 879–90.

Dymond AM, Kaechele LE, Jurist JM, Crandall PH. Brain tissue reaction to some chronically implanted metals. J Neurosurg. 1970; 33(5): 574–80.

Abeles M, Goldstein MH. Multispike train analysis. Proc IEEE. 1977; 65(5): 762–73.

Wörgötter F, Daunicht WJ, Eckmiller R. An on-line spike form discriminator for extracellular recordings based on an analog correlation technique. J Neurosci Methods. 1986; 17(2-3): 141–51.

Salganicoff M, Sarna M, Sax L, Gerstein GL. Unsupervised waveform classification for multi-neuron recordings: a realtime, software-based system. I. Algorithms and implementation. J Neurosci Methods. 1988; 25(3): 181–7.

Kreiter AK, Aertsen AM, Gerstein GL. A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. J Neurosci Methods. 1989; 30(1): 59–69.

Jansen RF, Ter Maat A. Automatic wave form classification of extracellular multineuron recordings. J Neurosci Methods. 1992; 41(2): 123–32.

Wheeler BC, Heetderks WJ. A comparison of techniques for classification of multiple neural signals. IEEE T Biomed Eng. 1982; 29(12): 752–9.

McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods. 1983; 8(4): 391–7.

Recce M, O’Keefe J. The tetrode: a new technique for multiunit extracellular recording. Soc Neurosci Abstr. 1989; 15(2): 1250.

Hoogerwerf AC, Wise KD. A three-dimensional microelectrode array for chronic neural recording. IEEE T Biomed Eng. 1994; 41(12): 1136–46.

Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012; 11(12): 1065–73.

Thelin J, Jörntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE. Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 2011; doi: 10.1371/journal.pone.0016267.

Jones KE, Campbell PK. Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4): 423–37.

Rousche PJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998; 82(1): 1–15.

Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK. Ceramic-based multisite electrode arrays for chronic singleneuron recording. IEEE T Biomed Eng. 2004; 51(4): 647–56.

Burmeister JJ, Moxon K, Gerhardt GA. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem. 2000. 72(1):187–92.

Wester BA, Lee RH, La Placa MC. Development and characterization of in vivo flexible electrodes compatible with large tissue displacements. J Neural Eng. 2009; doi: 10.1088/ 1741-2560/6/2/024002.

Pellinen D, Moon T, Vetter R, Miriani R, Kipke D. Multifunctional flexible parylene-based intracortical microelectrodes. Conf Proc IEEE Eng Med Biol Soc. 2005; 5: 5272–5.

Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005; 5(5): 519–23.

Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng. 2013; doi: 10.1088/1741-2560/10/4/045002.

Lee K, Singh A, He J, Massia S, Kim B, Raupp G. Polyimide based neural implants with stiffness improvement. Sensor Actuat B-Chem. 2004; 102(1): 67–72.

Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3): 361–71.

Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng, 2004; 14(1): 104–7.

Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY. Design and fabrication of a polyimidebased microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods. 2009; 182(1): 6–16.

Xiang Z, Yen S-C, Xue N, Sun T, Tsang WM, Zhang S. Ultrathin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng. 2014; doi:10.1088/0960-1317/24/6/065015.

Shen W, Karumbaiah L, Liu X, Saxena T, Chen S, Patkar R, Bellamkonda RV, Allen MG. Extracellular matrix-based intracortical microelectrodes: toward a microfabricated neural interface based on natural materials. Microsystems Nanoeng. 2015; doi:10.1038/micronano.2015.10.

Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimerá A, Berganzo J, Villa R, Fernández LJ. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron. 2012; 37(1): 1–5.

Shin H, Kim S, Chio N, Lee HJ, Yoon E-S, Cho I-J. 3D multifunctional neural probe array for mapping functional connectivities in a 3D neuron chip. Conf Proc IEEE Micro Electro Mech Syst. 2016; doi: 10.1109/MEMSYS.2016.7421625.

Lee K, He J, Clement R, Massia S, Kim B. Biocompatible benzocyclobutene (BCB)-based neural implants with microfluidic channel. Biosens Bioelectron. 2004; 20(2): 404–7.

Zhu H, He J, Kim B. High-yield benzocyclobutene (BCB) based neural implants for simultaneous intra-and extracortical recording in rats. Conf Proc IEEE Eng Med Biol Soc. 2004; 6: 4341–4.

Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7): 2085–94.

Lind G, Linsmeier CE, Thelin J, Schouenborg J. Gelatineembedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. J Neural Eng. 2010; doi: 10.1088/1741-2560/7/4/046005.

Tien LW, Wu F, Tang-Schomer MD, Yoon E, Omenetto FG, Kaplan DL. Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv Funct Mater. 2013; 23(25): 3185–93.

Adrega T, Lacour SP. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng. 2010; doi:10.1088/0960-1317/20/5/055025.

Liang Guo, Guvanasen GS, Xi Liu, Tuthill C, Nichols TR, De Weerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Syst. 2013; 7(1): 1–10.

Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron. 2009; 24(10): 3067–72.

Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; doi: 10.1088/1741-2560/6/3/036003.

Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 2011; 54(1): 203–12.

Park DW, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Thongpang S, Ma Z, Williams JC. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014; doi: 10.1038/ncomms6258.

Lee CJ, Oh SH, Song JK, Kim SJ. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater Sci Eng C-Bio S. 2004; 24(1-2): 265–8.

Ochoa M, Wei P, Wolley AJ, Otto KJ, Ziaie B. A hybrid PDMSParylene subdural multi-electrode array. Biomed Microdevices. 2013; 15(3): 437–43.

Henle C, Hassler C, Kohler F, Schuettler M, Stieglitz T. Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system. Conf Proc IEEE Eng Med Biol Soc. 2011; 640–3.

Henle C, Raab M, Cordeiro JG, Doostkam S, Schulze-Bonhage A, Stieglitz T, Rickert J. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices. 2011; 13(1): 59–68.

Yamakawa T, Yamakawa T, Aou S, Ishizuka S, Suzuki M, Fujii M. Subdural electrode array manipulated by a shape memory alloy guidewire for minimally-invasive electrocorticogram recording. Conf Proc IEEE World Autom Cong. 2010; 1–6.

Yu KJ, Kuzum D, Hwang SW, Kim BH, Juul H, Kim NH, Won SM, Chiang K, Trumpis M, Richardson AG, Cheng H, Fang H, Thompson M, Bink H, Talos D, Seo KJ, Lee HN, Kang SK, Kim JH, Lee JY, Huang Y, Jensen FE, Dichter MA, Lucas TH, Viventi J, Litt B, Rogers JA. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater. 2016; 15(7): 782–91.

Rowland V, Macintyre WJ, Bidder TG. The production of brain lesions with electric currents. II. Bidirectional currents. J Neurosurg. 1960; 17: 55–69.

Robinson FR, Johnson MT. Histopathological studies of tissue reactions to various metals implanted in cat brains. ASD Tech Rep. 1961; 61(397): 13.

Bates JI, Reiners CR, Horn RC. A discussion of the uses of metals in surgery and an experimental study of the use of zirconium. Surg Gynecol Obstet. 1948; 87(2): 213–20.

Beder OE, Eade G. An investigation of tissue tolerance to titanium metal implants in dogs. Surgery. 1956; 39(3): 470–3.

Clarke EGC. Discussion on metals and synthetic materials in relation to tissues. P Roy Soc Med. 1953; 46(8): 641–52.

Cooper R, Crow HJ. Toxic effects of intra-cerebral electrodes. Med Biol Eng. 1966; 4(6): 575–81.

Bickford RG, Fischer G, Sayre GP. Histologic changes in the cats brain after introduction of metallic and plastic coated wire used in electro-encephalography. P Staff M Mayo Clin. 1957; 32(1): 14–21.

Babb TL, Kupfer W. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp Neurol. 1984; 86(2): 171–82.

Loeb GE, Richmond FJR. BION implants for therapeutic and functional electrical stimulation. In: Chapin JK, Moxon KA, editors. Neural prostheses for restoration of sensory and motor function. Boca Raton: CRC Press; 2000. pp. 75–98.

Patan MK. Titanium nitride as an electrode material for high charge density applications. PhD Dissertation, New Jersey, New Jersey Institute of Technology. 2007.

Mohanan P, Rathinam K. Biocompatibility studies on silicone rubber. Conf Proc IEEE Eng Med Biol Soc. 1995; doi: 10.1109/ RCEMBS.1995.533005.

Agnew WF, McCreery DB. Neural prostheses: fundamental studies. Englewood Cliffs: Prentice Hall; 1990.

Schmidt S, Horch K, Normann R. Biocompatibility of siliconbased electrode arrays implanted in feline cortical tissue. J Biomed Mater Res. 1993; 27(11): 1393–9.

Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials. 2003; 24(11): 1959–67.

Brazier MA. Recordings from large electrodes. Methods Med Res. 1961; 9: 405–32.

Seymour JP, Kipke DR. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials. 2007; 28(25): 3594–607.

Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran JM, Melzak J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials. 2002; 23(13): 2737–50.

Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophth Vis Sci. 2009; 50(12): 5859–66.

Matthews R, McDonald NJ, Anumula H, Woodward J, Turner PJ, Steindorf MA, Chang K, Pendleton JM. Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system, Lect Notes Artif Int. 2007; doi: 10.1007/978-3-540-73216-7_16.

Lee SB, Lee B, Kiani M, Mahmoudi B, Gross R, Ghovanloo M. An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sens J. 2016; 16(2): 475–84.

Rhew H-G, Jeong J, Fredenburg JA, Dodani S, Patil PG, Flynn MP. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid-St Circ. 2014; 49(10): 2213–27.