A review of currently identified small molecule modulators of microRNA function

European Journal of Medicinal Chemistry - Tập 188 - Trang 112008 - 2020
Emile N. Van Meter1, Jackline A. Onyango1, Kelly A. Teske1
1Chemistry Department, Western Michigan University, 1903 W. Michigan University, Mail Stop 5413, Kalamazoo, MI, 49008-5413, USA

Tài liệu tham khảo

Bartel, 2004, Review MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5 Lee, 1993, The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y Hausser, 2014, Identification and consequences of MiRNA-target interactions-beyond repression of gene expression, Nat. Rev. Genet., 15, 599, 10.1038/nrg3765 Esquela-Kerscher, 2006, Oncomirs - MicroRNAs with a role in cancer, Nat. Rev. Cancer, 6, 259, 10.1038/nrc1840 Alles, 2019, An estimate of the total number of true human MiRNAs, Nucleic Acids Res., 47, 3353, 10.1093/nar/gkz097 Bracken, 2016, A network-biology perspective of MicroRNA function and dysfunction in cancer, Nat. Rev. Genet., 17, 719, 10.1038/nrg.2016.134 Lin, 2015, MicroRNA biogenesis pathways in cancer, Nat. Rev. Cancer, 15, 321, 10.1038/nrc3932 Jonas, 2015, Towards a molecular understanding of MicroRNA-mediated gene silencing, Nat. Rev. Genet., 16, 421, 10.1038/nrg3965 Kawamata, 2010, Making RISC, Trends Biochem. Sci., 35, 368, 10.1016/j.tibs.2010.03.009 Lai, 2002, Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation, Nat. Genet., 30, 363, 10.1038/ng865 Lewis, 2005, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets, Cell, 120, 15, 10.1016/j.cell.2004.12.035 Elkayam, 2012, The structure of human argonaute-2 in complex with MiR-20a, Cell, 150, 100, 10.1016/j.cell.2012.05.017 Schirle, 2014, Structural basis for MicroRNA targeting, Science, 346, 608, 10.1126/science.1258040 Lytle, 2007, Target MRNAs are repressed as efficiently by MicroRNA-binding sites in the 5’ UTR as in the 3’ UTR, Proc. Natl. Acad. Sci. U. S. A., 104, 9667, 10.1073/pnas.0703820104 Staedel, 2018, Modulation of oncogenic MiRNA biogenesis using functionalized polyamines, Sci. Rep., 8, 1 Pillai, 2006, Repression of protein synthesis by MiRNAs: how many mechanisms?, Trends Cell Biol., 17, 118, 10.1016/j.tcb.2006.12.007 Contreras, 2012, MicroRNAs in inflammation and immune responses, Leukemia, 26, 404, 10.1038/leu.2011.356 Gehrke, 2010, Pathogenic LRRK2 negatively regulates MicroRNA-mediated translational repression, Nature, 466, 637, 10.1038/nature09191 Esteller, 2011, Non-coding RNAs in human disease, Nat. Rev. Genet., 12, 861, 10.1038/nrg3074 Teng, 2013, Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting toll-like receptor 4, PLoS One, 8, 10.1371/journal.pone.0056709 Thum, 2008, MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts, Nature, 456, 980, 10.1038/nature07511 Cacchiarelli, 2011, MiR-31 modulates dystrophin expression: new implications for duchenne muscular dystrophy therapy, EMBO Rep., 12, 136, 10.1038/embor.2010.208 Jopling, 2005, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science (80-.), 309, 1577, 10.1126/science.1113329 Kutay, 2006, Downregulation of MiR-122 in the rodent and human hepatocellular carcinomas, J. Cell. Biochem., 99, 671, 10.1002/jcb.20982 Young, 2010, Small molecule modifiers of MicroRNA MiR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma, J. Am. Chem. Soc., 132, 7976, 10.1021/ja910275u Gumireddy, 2008, Small molecule inhibitors of MicroRNA MiR-21 function, Angew Chem. Int. Ed. Engl., 47, 7482, 10.1002/anie.200801555 Chan, 2005, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res., 65, 6029, 10.1158/0008-5472.CAN-05-0137 Wang, 2016, vol. 9, 2718 Yamanaka, 2019, Aberrant overexpression of MicroRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer – cell lymphoma/leukemia, Blood, 114, 3265, 10.1182/blood-2009-06-222794 Medina, 2010, OncomiR addiction in Nn in vivo model of MicroRNA-21-induced pre-B-cell lymphoma, Nature, 467, 86, 10.1038/nature09284 Volinia, 2006, A MicroRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci. U. S. A., 103, 2257, 10.1073/pnas.0510565103 Pan, 2010, vol. 10, 1224 Naro, 2015, Aryl amide small-molecule inhibitors of MicroRNA MiR-21 function, Bioorg. Med. Chem. Lett, 25, 4793, 10.1016/j.bmcl.2015.07.016 Bose, 2012, The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of MiR-21 function by directly targeting its precursors, Angew. Chem. Int. Ed., 51, 1019, 10.1002/anie.201106455 Pilch, 1999, The thermodynamics of polyamide - DNA Recognition : hairpin polyamide binding in the minor groove of duplex DNA, Biochemistry, 38, 2143, 10.1021/bi982628g Yan, 2017, Regulating MiRNA-21 biogenesis by bifunctional small molecules, J. Am. Chem. Soc., 139, 4987, 10.1021/jacs.7b00610 Billamboz, 2008, Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1 , 3 (2 H , 4 H) -diones as dual inhibitoilkupuors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain, J. Med. Chem., 51, 7717, 10.1021/jm8007085 Connelly, 2017, Discovery of inhibitors of MicroRNA-21 processing using small molecule microarrays, ACS Chem. Biol., 12, 435, 10.1021/acschembio.6b00945 Horvitz, 2002, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901 Fishman, 2002, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA, Nature, 408, 86 Suh, 2004, Human embryonic stem cells express a unique set of MicroRNAs, Dev. Biol., 270, 488, 10.1016/j.ydbio.2004.02.019 Byrom, 2005, RAS is regulated by the let-7 MicroRNA family, Cell, 120, 635, 10.1016/j.cell.2005.01.014 Kumar, 2008, Suppression of non-small cell lung tumor development by the let-7 MicroRNA family, Proc. Natl. Acad. Sci., 105, 3903, 10.1073/pnas.0712321105 Aris, 2007, MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in burkitt lymphoma cells, Cancer Res., 67, 9762, 10.1158/0008-5472.CAN-07-2462 Mayr, 2007, Disrupting the pairing between let-7 and Hmga2 enhances oncogenic trasnformation, Science, 315, 1576, 10.1126/science.1137999 Newman, 2008, Lin-28 interaction with the let-7 precursor loop mediates regulated MicroRNA processing, RNA, 14, 1539, 10.1261/rna.1155108 Viswanathan, 2008, vol. 320, 97 Heo, 2008, Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA, Mol. Cell, 32, 276, 10.1016/j.molcel.2008.09.014 Nagino, 2005, Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival, Cancer Res., 64, 3753 Lightfoot, 2016, Identification of small molecule inhibitors of the lin28-mediated blockage of pre-let-7g processing, Org. Biomol. Chem., 14, 10208, 10.1039/C6OB01945E Lim, 2016, Discovery of a small-molecule inhibitor of protein-MicroRNA interaction using binding assay with a site-specifically labeled Lin28, J. Am. Chem. Soc., 138, 13630, 10.1021/jacs.6b06965 Lim, 2018, Restoring let-7 MicroRNA biogenesis using a small-molecule inhibitor of the protein-RNA interaction, ACS Med. Chem. Lett., 9, 1181, 10.1021/acsmedchemlett.8b00323 Roos, 2016, A small-molecule inhibitor of Lin28, ACS Chem. Biol., 11, 2773, 10.1021/acschembio.6b00232 Lorenz, 2018, Expansion of cat-ELCCA for the discovery of small molecule inhibitors of the pre-let-7-lin28 RNA-protein interaction, ACS Med. Chem. Lett., 9, 517, 10.1021/acsmedchemlett.8b00126 Wang, 2018, Small-molecule inhibitors disrupt let-7 oligouridylation and release the selective blockade of let-7 processing by LIN28, Cell Rep., 23, 3091, 10.1016/j.celrep.2018.04.116 Cinkornpumin, 2017, A small molecule screen to identify regulators of let-7 targets, Sci. Rep., 7, 1 Yu, 2016, BAP1 suppresses lung cancer progression and is inhibited by MiR-31, Oncotarget, 7, 13742, 10.18632/oncotarget.7328 Xu, 2016, MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin Α5, Oncotarget, 7, 27445, 10.18632/oncotarget.8479 Zhang, 2011, The oncogenetic role of MicroRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma, Clin. Sci. (Lond), 121, 437, 10.1042/CS20110207 Sun, 2013, MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS P21 GTPase activating protein 1 (RASA1), J. Biol. Chem., 288, 9508, 10.1074/jbc.M112.367763 Hung, 2014, MiR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes, Carcinogenesis, 35, 1162, 10.1093/carcin/bgu024 Okudela, 2014, Allelic imbalance in the mir-31 host gene locus in lung cancer - its potential role in carcinogenesis, PLoS One, 9, 1, 10.1371/journal.pone.0100581 Xu, 2013, MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40, J. Immunol., 190, 678, 10.4049/jimmunol.1202695 Olaru, 2011, Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation, Inflamm. Bowel Dis., 17, 221, 10.1002/ibd.21359 Im, 2017, Identification of aminosulfonylarylisoxazole as micro-RNA-31 regulators, PLoS One, 12, 1, 10.1371/journal.pone.0182331 Li, 2015, MiR-31 promotes proliferation of colon cancer cells by targeting E2F2, Biotechnol. Lett., 37, 523, 10.1007/s10529-014-1715-y Taccioli, 2015, Repression of esophageal neoplasia and inflammatory signaling by anti-MiR-31 delivery in vivo, J. Natl. Cancer Inst., 107, 1, 10.1093/jnci/djv220 Bandiera, 2015, MiR-122 - a key factor and therapeutic target in liver disease, J. Hepatol., 62, 448, 10.1016/j.jhep.2014.10.004 Gramantieri, 2007, Cyclin G1 is a target of MiR-122a, a MicroRNA frequently down-regulated in human hepatocellular carcinoma, Cancer Res., 67, 6092, 10.1158/0008-5472.CAN-06-4607 Schmidt, 2014, Drug target MiRNAs, Trends Biotechnol., 32, 578, 10.1016/j.tibtech.2014.09.002 Young, 2010, Small molecule modifiers of MicroRNA MirR-122 function for the treatment of hepatisis C virus infection and hepatocellular carcinoma, J. Am. Chem. Soc., 132, 7976, 10.1021/ja910275u Voorhoeve, 2007, A genetic screen implicates MiRNA-372 and MiRNA-373 as oncogenes in testicular germ cell tumors, Adv. Exp. Med. Biol., 604, 17, 10.1007/978-0-387-69116-9_2 Jian, 2009, MicroRNA-373 (MiR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer, Exp. Cell Res., 315, 2529, 10.1016/j.yexcr.2009.06.001 Belair, 2011, Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression, Silence, 2, 1 Cho, 2009, MiR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2, Mol. Cells, 28, 521, 10.1007/s10059-009-0158-0 Rippe, 2010, The two stem cell MicroRNA gene clusters C19MC and MiR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas, PLoS One, 5, 1, 10.1371/journal.pone.0009485 Wang, 2018, MiR-372 and MiR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways, Mol. Oncol., 12, 1949, 10.1002/1878-0261.12376 Vo, 2014, Targeting the production of oncogenic MicroRNAs with multimodal synthetic small molecules, ACS Chem. Biol., 9, 711, 10.1021/cb400668h Duca, 2008, The triple Helix : 50 Years later, Outcome, 36, 5123 Malnuit, 2011, Targeting DNA base pair mismatch with artificial nucleobases, Adv. Perspect. Triple Helix Strategy, 9, 326 Guianvarc’h, 2001, Incorporation of a novel nucleobase allows stable oligonucleotide–directed triple helix formation at the target sequence containing a Purine·Pyrimidine interruption, Chem. Commun., 1, 1814, 10.1039/b103743a Guianvarc’h, 2003, Design of artificial nucleobases for the recognition of the at inversion by triple-helix forming oligonucleotides: a structure-stability relationship study and neighbour bases effect, Bioorg. Med. Chem., 11, 2751, 10.1016/S0968-0896(03)00229-3 Lecubin, 1999, NMR recognition studies of C·G base pairs by new easily accessible heterobicyclic systems, Tetrahedron Lett., 40, 8085, 10.1016/S0040-4039(99)01668-8 Griffin, 1992, Recognition of all four base pairs of double-helical DNA by triple-helix formation: design of nonnatural deoxyribonucleosides for Pyrimidine·Purine base pair binding, J. Am. Chem. Soc., 114, 7976, 10.1021/ja00047a003 Wang, 2004, Base pair recognition by substituted phenylimidazole nucleosides, Org. Biomol. Chem., 2, 1194, 10.1039/b316077g Agostinelli, 2010, Polyamines: fundamental characters in chemistry and biology, Amino Acids, 38, 393, 10.1007/s00726-009-0396-7 Mitchell, 2007, Unusual aspects of the polyamine transport system Affect the design of strategies for use of polyamine analogues in chemotherapy, Biochem. Soc. Trans., 35, 318, 10.1042/BST0350318 Lightfoot, 2014, Endogenous polyamine function - the RNA perspective, Nucleic Acids Res., 42, 11275, 10.1093/nar/gku837 Wang, 2014, MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin, Oncotarget, 5, 7013, 10.18632/oncotarget.2192 Xiang, 2018, Isoliquiritigenin suppresses human melanoma growth by targeting MiR-301b/LRIG1 signaling, J. Exp. Clin. Cancer Res., 37, 1 Burton, 2009, The role of bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death, Cell Death Differ., 515, 10.1038/cdd.2008.185 Diwan, 2007, Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNIP3 restrains postinfarction remodeling in mice, J. Clin. Investig., 117, 2825, 10.1172/JCI32490 Kubasiak, 2002, Hypoxia and acidosis activate cardiac myocyte death through the bcl-2 family protein BNIP3, Proc. Natl. Acad. Sci., 99, 12825, 10.1073/pnas.202474099 Lee, 2016, Small molecule-mediated up-regulation of MicroRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury, Sci. Rep., 6 He, 2007, A MicroRNA component of the P53 tumour suppressor network, Nature, 447, 1130, 10.1038/nature05939 Tazawa, 2007, Tumor-suppressive MiR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells, Proct Natl Acad Sci U S A∖, 104, 15472, 10.1073/pnas.0707351104 Tarasov, 2007, Differential regulation of MicroRNAs by P53 revealed by massively parallel sequencing: MiR-34a is a P53 target that induces apoptosis and G 1-arrest, Cell Cycle, 6, 1586, 10.4161/cc.6.13.4436 Oren, 2007, Transcriptional activation of MiR-34a contributes to P53-mediated apoptosis, Mol. Cell, 26, 731, 10.1016/j.molcel.2007.05.017 Cho, 2007, P53-Mediated activation of MiRNA34 candidate tumor-suppressor genes, Curr. Biol., 17, 1298, 10.1016/j.cub.2007.06.068 Levine, 1997, P53, the cellular gatekeeper for growth and division, Cell, 323, 10.1016/S0092-8674(00)81871-1 Welch, 2007, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells, Oncogene, 26, 5017, 10.1038/sj.onc.1210293 Li, 2009, MiR-34a inhibits migration and invasion by down-regulation of c-met expression in human hepatocellular carcinoma cells, Cancer Lett, 275, 44, 10.1016/j.canlet.2008.09.035 Chang, 2007, Transactivation of MiR-34a by P53 broadly influences gene expression and promotes apoptosis, Mol. Cell, 26, 745, 10.1016/j.molcel.2007.05.010 Xiao, 2014, A small-molecule modulator of the tumor-suppressor MiR-34a inhibits the growth of hepatocellular carcinoma, Cancer Res, 74, 6236, 10.1158/0008-5472.CAN-14-0855 Zhao, 2005, Serum response factor regulates a muscle-specific MicroRNA that targets Hand2 during cardiogenesis, Nature, 436, 214, 10.1038/nature03817 Kwon, 2005, MicroRNA-1 influences cardiac differentiation in Drosophila and regulates notch signaling, Proc. Natl. Acad. Sci., 102, 18986, 10.1073/pnas.0509535102 Yang, 2007, The muscle-specific MicroRNA MiR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2, Nat. Med., 13, 486, 10.1038/nm1569 Terentyev, 2009, MiR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56αlpha and causing CaMKII-dependent hyperphosphorylation of RyR2, Circ. Res., 104, 514, 10.1161/CIRCRESAHA.108.181651 Shan, 2009, Tanshinone MA protects against sudden cardiac death induced by lethal arrhythmias via repression of MicroRNA-1, Br. J. Pharmacol., 158, 1227, 10.1111/j.1476-5381.2009.00377.x Zhang, 2010, Cellular physiology biochemistry and biochemistr y Tanshinone IIA inhibits MiR-1 expression through P38 MAPK signal pathway in post-infarction rat cardiomyocytes, Cell. Physiol. Biochem., 26, 991, 10.1159/000324012 Tan, 2013, Small molecular inhibitors of MiR-1 identified from photocycloadducts of acetylenes with 2-methoxy-1,4-naphthalenequinone, Bioorganic Med. Chem., 21, 6124, 10.1016/j.bmc.2013.04.058 Chen, 2012, A universal activator of MicroRNAs identified from photoreaction products, Chem. Commun., 48, 6432, 10.1039/c2cc32157b Mertens-talcott, 2007, The oncogenic MicroRNA-27a targets genes that regulate specificity protein transcription factors and the G 2 -M checkpoint in MDA-MB-231 breast cancer cells, Cancer Res, 67, 11001, 10.1158/0008-5472.CAN-07-2416 Liu, 2009, MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin, Cancer Lett, 273, 233, 10.1016/j.canlet.2008.08.003 Chintharlapalli, 2009, Oncogenic MicroRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells, Int. J. Cancer, 125, 1965, 10.1002/ijc.24530 Guttilla, 2009, Coordinate regulation of FOXO1 by MiR-27a, MiR-96, and MiR-182 in breast cancer cells, J. Biol. Chem., 284, 23204, 10.1074/jbc.M109.031427 Bose, 2013, A molecular-beacon-based screen for small molecule inhibitors of MiRNA maturation, ACS Chem. Biol., 8, 930, 10.1021/cb300650y Scott, 2006, Rapid alteration of MicroRNA levels by histone deacetylase inhibition, Cancer Res, 66, 1277, 10.1158/0008-5472.CAN-05-3632 Mertens-Talcott, 2007, The oncogenic MicroRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells, Cancer Res, 67, 11001, 10.1158/0008-5472.CAN-07-2416 Tillotson, 1999, RIN ZF, a novel zinc finger gene, encodes proteins that bind to the CACC element of the gastrin promoter, J. Biol. Chem., 274, 8123, 10.1074/jbc.274.12.8123 Shi, 2013, AC1MMYR2, an inhibitor of dicer-mediated biogenesis of oncomir MiR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression, Cancer Res, 73, 5519, 10.1158/0008-5472.CAN-13-0280 Junaid, 2017, Molecular simulation studies of 3,3’-diindolymethane as a potent MicroRNA-21 antagonist, J. Pharm Bioallied Sci, 9, 259, 10.4103/JPBS.JPBS_266_16 Chen, 2017, Journal of molecular graphics and modelling direct binding of MicroRNA-21 pre-element with Regorafenib : an alternative mechanism for anti-colorectal cancer Chemotherapy ?, J. Mol. Graph. Model., 73, 48, 10.1016/j.jmgm.2017.02.004 Khoza-Shangase, 2017, Risk versus benefit: who assesses this in the management of patients on ototoxic drugs?, J Pharm Bioallied Sci, 9, 171, 10.4103/jpbs.JPBS_17_17 Wilhelm, 2011, vol. 129, 245 Liu, 2018, Identification of small-molecule ligands that bind to MiR-21 as potential therapeutics for endometriosis by screening ZINC database and in-vitro assays, Gene, 662, 46, 10.1016/j.gene.2018.03.094 Velagapudi, 2014, Sequence-based design of bioactive small molecules that target precursor MicroRNAs, Nat. Chem. Biol., 10, 291, 10.1038/nchembio.1452 Disney, 2016, Inforna 2.0: a Platform for the sequence-based design of small molecules targeting structures RNAs, ACS Chem. Biol., 11, 1720, 10.1021/acschembio.6b00001 Eubanks, 2016, Small molecule-based pattern recognition to classify RNA structure, J. Am. Chem. Soc., 139, 409, 10.1021/jacs.6b11087 Disney, 2008, Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners, J. Am. Chem. Soc., 130, 11185, 10.1021/ja803234t Disney, 2014, Methods to enable the design of bioactive small molecules targeting RNA, Org. Biomol. Chem., 12, 1029, 10.1039/C3OB42023J Disney, 2016, Rational design of small molecules targeting oncogenic noncoding RNAs from sequence, Acc. Chem. Res., 49, 2698, 10.1021/acs.accounts.6b00326 Velagapudi, 2010, Structure-activity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules, Angew. Chemie - Int. Ed., 49, 3816, 10.1002/anie.200907257 Velagapudi, 2011, Defining the RNA internal loops preferred by benzimidazole derivatives via 2D combinatorial screening and computational analysis, J. Am. Chem. Soc., 133, 10111, 10.1021/ja200212b Disney, 2019, Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine, J. Am. Chem. Soc., 141, 6776, 10.1021/jacs.8b13419 Disney, 2016, Inforna 2.0: a Platform for the sequence-based design of small molecules targeting structures RNAs, ACS Chem. Biol., 11, 1720, 10.1021/acschembio.6b00001 Velagapudi, 2014, Two-dimensional combinatorial screening enables the bottom-up design of a MicroRNA-10b inhibitor, Chem. Commun., 50, 3027, 10.1039/c3cc00173c Ma, 2010, Therapeutic silencing of MiR-10b inhibits metastasis in a mouse mammary tumor model, Nat. Biotechnol., 28, 341, 10.1038/nbt.1618 Tahiri, 2014, Deregulation of cancer-related MiRNAs is a common event in both benign and malignant human breast tumors, Carcinogenesis, 35, 76, 10.1093/carcin/bgt333 Yamada, 2011, MiR-96 and MiR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology, Cancer Sci, 102, 522, 10.1111/j.1349-7006.2010.01816.x Chen, 2012, Suppression of MicroRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells, Mol. Med. Rep., 5, 800 Mihelich, 2011, MiR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells, J. Biol. Chem., 286, 44503, 10.1074/jbc.M111.262915 Xu, 2012, Expression of MiR-21, MiR-31, MiR-96 and MiR-135b is correlated with the clinical parameters of colorectal cancer, Oncol. Lett., 4, 339, 10.3892/ol.2012.714 Xu, 2018, Anticancer effect of MiR-96 inhibitor in bladder cancer cell lines, Oncol. Lett., 15, 3814 Xie, 2012, FOXO1 is a tumor suppressor in classical hodgkin lymphoma, Blood, 119, 3503, 10.1182/blood-2011-09-381905 Dansen, 2008, Unraveling the tumor-suppressive functions of FOXO proteins, Trends Cell Biol, 18, 421, 10.1016/j.tcb.2008.07.004 Velagapudi, 2016, Design of a small molecule against an oncogenic noncoding RNA, Proc. Natl. Acad. Sci., 113, 5898, 10.1073/pnas.1523975113 Li, 2018, Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype, ACS Chem. Biol., 13, 3065, 10.1021/acschembio.8b00827 Sugiyama, 1986, DNA strand scission by bleomycin: catalytic cleavage and strand selectivity, J. Am. Chem. Soc., 108, 3852, 10.1021/ja00273a063 Sugiyama, 1985, An efficient, site-specific DNA target for bleomycin, J. Am. Chem. Soc., 107, 7765, 10.1021/ja00311a092 Carter, 2006, Site-specific cleavage of RNA by Fe(II) bleomycin, Proc. Natl. Acad. Sci., 87, 9373, 10.1073/pnas.87.23.9373 Abraham, 2003, S1074-5521(03)00002-4, Chem. Biol., 10, 53 Angelbello, 2018, Bleomycin can cleave an oncogenic noncoding RNA, ChemBioChem, 19, 43, 10.1002/cbic.201700581 Kelly, 2011, A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1a stability through MiR-210 suppression of glycerol-3-phosphate dehydrodenase 1-like, Mol. Cell. Biol., 31, 2696, 10.1128/MCB.01242-10 Redova, 2013, MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma, Tumor Biol, 34, 481, 10.1007/s13277-012-0573-2 Grosso, 2013, MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines, Cell Death Dis, 4, e544, 10.1038/cddis.2013.71 Velagapudi, 2014, Sequence-based design of bioactive small molecules that target precursor MicroRNAs, Nat. Chem. Biol., 10, 291, 10.1038/nchembio.1452 Costales, 2019, Targeted degradation of a hypoxia-associated non-coding RNA enhances the selectivity of a small molecule interacting with RNA, Cell Chem. Biol., 26, 1180, 10.1016/j.chembiol.2019.04.008 Costales, 2017, Small molecule inhibition of MicroRNA-210 reprograms an oncogenic hypoxic circuit, J. Am. Chem. Soc., 139, 3446, 10.1021/jacs.6b11273 Costales, 2019, A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to Herceptin, J. Am. Chem. Soc., 141, 2960, 10.1021/jacs.8b10558 Haga, 2011, Small molecule inhibition of MiR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-MTOR signaling, J. Am. Chem. Soc., 133, 10111 Haga, 2015, Small molecule inhibition of MiR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-MTOR signaling, ACS Chem. Biol., 10, 2267, 10.1021/acschembio.5b00265 Velagapudi, 2017, Defining RNA-small molecule affinity landscapes enables design of a small molecule inhibitor of an oncogenic noncoding RNA, ACS Cent. Sci., 3, 205, 10.1021/acscentsci.7b00009 Thomson, 2005, A MicroRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552 Castellano, 2009, The estrogen receptor-α-induced MicroRNA signature regulates itself and its transcriptional response, Proc. Natl. Acad. Sci. U. S. A., 106, 15732, 10.1073/pnas.0906947106 Hsu, 2014, MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo, Oncogenesis, 3, 10.1038/oncsis.2014.12 Sand, 2017, Expression of oncogenic MiR-17-92 and tumor suppressive MiR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma, J. Dermatol. Sci., 86, 142, 10.1016/j.jdermsci.2017.01.012 Lu, 2007, Transgenic over-expression of the MicroRNA MiR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells, Dev. Biol., 310, 442, 10.1016/j.ydbio.2007.08.007 Velagapudi, 2018, Approved anti-cancer drugs target oncogenic non-coding RNAs, Cell Chem. Biol., 25, 1086, 10.1016/j.chembiol.2018.05.015 Martinez, 2002, Single-stranded antisense SiRNAs guide target RNA cleavage in RNAi, Cell, 110, 563, 10.1016/S0092-8674(02)00908-X Carmell, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513 Tuschl, 2004, Human Argonaute2 mediates RNA cleavage targeted by MiRNAs and SiRNAs, Mol. Cell, 15, 185, 10.1016/j.molcel.2004.07.007 Tan, 2009, Expanded RNA-binding activities of mammalian Argonaute 2, Nucleic Acids Res, 37, 7533, 10.1093/nar/gkp812 Liu, 2011, Clarifying mammalian RISC assembly in vitro, BMC Mol. Biol., 12, 19, 10.1186/1471-2199-12-19 Doudna, 2008, In vitro reconstitution of the human RISC-loading complex, Proc. Natl. Acad. Sci., 105, 512, 10.1073/pnas.0710869105 Tan, 2012, Small molecule inhibition of RISC loading, ACS Chem. Biol., 7, 403, 10.1021/cb200253h Collins, 1986, Patients pharmacokinetics of suramin in with HTLV-III/LAV infection, J. Clin. Pharmacolo, 26, 22, 10.1002/j.1552-4604.1986.tb02897.x Blandini, 2008, The 6-hydroxydopamine model: news from the past, Park. Relat. Disord., 14, 124, 10.1016/j.parkreldis.2008.04.015 Hallick, 1977, Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation, Nucleic Acids Res, 4, 3055, 10.1093/nar/4.9.3055 Tan, 2012, Small molecule inhibition of RISC loading, ACS Chem. Biol., 7, 403, 10.1021/cb200253h Masciarelli, 2014, A small-molecule targeting the MicroRNA binding domain of Argonaute 2 improves the retinoic acid differentiation response of the acute promyelocytic leukemia cell line NB4, ACS Chem. Biol., 9, 1674, 10.1021/cb500286b Schmidt, 2013, MicroRNA-specific Argonaute 2 protein inhibitors, ACS Chem. Biol., 8, 2122, 10.1021/cb400246k Rivas, 2005, Purified Argonaute2 and an SiRNA form recombinant human RISC, Nat. Struct. Mol. Biol., 12, 340, 10.1038/nsmb918 Watashi, 2010, Identification of small molecules that suppress MicroRNA function and reverse tumorgenesis, J. Biol. Chem., 285, 24707, 10.1074/jbc.M109.062976 Lu, 2005, MicroRNA expression profiles classify human cancers, Nature, 435, 834, 10.1038/nature03702 Volinia, 2006, A MicroRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci., 103, 2257, 10.1073/pnas.0510565103 Calin, 2006, MicroRNA signatures in human cancers, Nat. Rev. Cancer, 6, 857, 10.1038/nrc1997 Melo, 2011, Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated MicroRNA processing, Proc. Natl. Acad. Sci., 108, 4394, 10.1073/pnas.1014720108 Shan, 2008, A small molecule enhances RNA interference and promotes MicroRNA processing, Nat. Biotechnol., 26, 933, 10.1038/nbt.1481 Melo, 2011, Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated MicroRNA processing, Proc. Natl. Acad. Sci., 108, 4394, 10.1073/pnas.1014720108 Bhanot, 2005, The chemical and biological aspects of fluoroquinolones reality and dreams, Curr. Pharm. Des., 7, 311, 10.2174/1381612013398059 Sousa, 2013, Enoxacin inhibits growth of prostrate cancer cells and effectively restores MicroRNA processing, Epigenetics, 8, 548, 10.4161/epi.24519 Kim, 2000, Protein-protein interaction among HnRNPs shuttling between nucleus and cytoplasm, J. Mol. Biol., 298, 395, 10.1006/jmbi.2000.3687 Li, 2012, Iron homeostasis regulates the activity of the MicroRNA pathway through poly(C)-Binding protein 2, Cell Metab, 15, 895, 10.1016/j.cmet.2012.04.021 Bedard, 2004, Multimerization of poly(RC) binding protein 2 is required for translation initiation mediated by viral IRES, RNA, 10, 1266, 10.1261/rna.7070304 Nahar, 2014, Anti-cancer therapeutic potential of quinazoline based small molecules via global upregulation of MiRNAs, ChemComm, 50, 4639 Treiber, 2017, A compendium of RNA-binding proteins that regulate MicroRNA biogenesis, Mol. Cell, 66, 270, 10.1016/j.molcel.2017.03.014 Guil, 2007, The multifunctional RNA-binding protein HnRNP A1 is required for processing of MiR-18a, Nat. Struct. Mol. Biol., 14, 591, 10.1038/nsmb1250 Kooshapur, 2018, Structural basis for terminal loop recognition and stimulation of pri-MiRNA-18a processing by HnRNP A1, Nat. Commun., 9, 10.1038/s41467-018-04871-9 He, 2005, A MicroRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552 Hsu, 2014, MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo, Oncogenesis, 3, 10.1038/oncsis.2014.12 Wang, 2018, MiR-29a: a potential therapeutic target and promising biomarker in tumors, Biosci. Rep., 38, 1, 10.1042/BSR20171265