A review of bioanalytical techniques for evaluation of cannabis (Marijuana, weed, Hashish) in human hair
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ginat DT, Small JE, Schaefer PW, Ang E, Stuckey S, Ginat D, Chandra R (2015) Cannabis (Marijuana). Springer International Publishing, Neuroimaging Pharmacopoeia, pp 41–47
Hall W (2015) What has research over the past two decades revealed about the adverse health effects of recreational cannabis use? Addiction 110(1):19–35
Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, Fernández N, Barroso M, Gallardo E, Duarte AP (2019) Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 6(1):31
Gonzalez R, Martin EM, Grant I (2007) Marijuana, neuropsychology and substance use: state-of-the-art and future directions. Psychology Press, London, p 139
Musshoff F, Madea B (2006) Review of biologic matrices (urine, blood, hair) as indicators of recent or ongoing cannabis use. Ther Drug Monit 28(2):155–163
Boumba VA, Ziavrou KS, Vougiouklakis T (2006) Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. Int J Toxicol 25(3):143–163
Saito K, Saito R, Kikuchi Y, Iwasaki Y, Ito R, Nakazawa H (2011) Analysis of drugs of abuse in biological specimens. J Health Sci 57(6):472–487
Cooper GAA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int 218(1):20–24
Allen GM (2004) Bats: biology, behavior, and folklore. Dover Publications, Mineola
Fucci N, De Giovanni N (2012) False positive cannabis results in Italian workplace drug testing. Drug Test Anal 4(2):71
Maugh TH (1978) Hair: a diagnostic tool to complement blood serum and urine. Science 202(4374):1271–1273
Sachs H, Kintz P (1998) Testing for drugs in hair: critical review of chromatographic procedures since 1992. J Chromatogr B Biomed Sci Appl 713(1):147–161
Huestis MA (2005) Pharmacokinetics and metabolism of the plant cannabinoids, Δ-tetrahydrocannabinol, cannabidiol and cannabinol, cannabinoids. Springer, Berlin, pp 657–690
Grotenhermen F (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42(4):327–360
Bermejo AM, Tabernero MJS (2012) Determination of drugs of abuse in hair. Bioanalysis 4(17):2091–2094
Kintz P (2012) Segmental hair analysis can demonstrate external contamination in postmortem cases. Forensic Sci Int 215(1):73–76
LeBeau MA, Montgomery MA, Brewer JD (2011) The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci Int 210(1):110–116
Baciu T, Borrull F, Aguilar C, Calull M (2015) Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Anal Chim Acta 856:1–26
Barroso MR, Gallardo E, Vieira DN, López-Rivadulla M, Queiroz JA (2011) Hair: a complementary source of bioanalytical information in forensic toxicology. Bioanalysis 3(1):67–79
Barroso MR, Gallardo E (2014) Hair analysis for forensic applications: is the future bright? Bioanalysis 6(1):1–3
Meyer MR, Kintz P (Ed) (2014) Toxicological aspects of drug-facilitated crimes. In: Analytical and bioanalytical chemistry 406(30)7757–7758
Aizpurua-Olaizola O, Omar J, Navarro P, Olivares M, Etxebarria N, Usobiaga A (2014) Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography–mass spectrometry. Anal Bioanal Chem 406(29):7549–7560
Cirimele V, Kintz P, Mangin P (1995) Testing human hair for cannabis. Forensic Sci Int 70(1):175–182
Conti M, Tazzari V, Bertona M, Brambilla M, Brambilla P (2011) Surface activated chemical ionization combined with electrospray ionization and mass spectrometry for the analysis of cannabinoids in biological samples. Part I: analysis of 11-nor-9-carboxytetrahydro-cannabinol. Rapid Commun Mass Spectrom 25(11):1552–1558
Kronstrand R, NystrÃm I, Strandberg J, Druid H (2004) Screening for drugs of abuse in hair with ion spray LCMSMS. Forensic Sci Int 145(2):183–190
Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370(1):17–49
Mercolini L, Mandrioli R, Protti M, Conti M, Serpelloni G, Raggi MA (2013) Monitoring of chronic Cannabis abuse: an LC–MS/MS method for hair analysis. J Pharm Biomed Anal 76:119–125
Koster RA, Alffenaar J-WC, Greijdanus B, VanDer Nagel JEL, Uges DRA (2014) Fast and highly selective LC-MS/MS screening for THC and 16 other abused drugs and metabolites in human hair to monitor patients for drug abuse. Ther Drug Monit 36(2):234–243
Kintz P (2013) Issues about axial diffusion during segmental hair analysis. Ther Drug Monit 35(3):408–410
Han E, Chung H, Song JM (2012) Segmental hair analysis for 11-Nor-Δ9-tetrahydrocannabinol-9-carboxylic acid and the patterns of cannabis use. J Anal Toxicol 36(3):195–200
Deshmukh N, Hussain I, Barker J, Petroczi A, Naughton DP (2010) Analysis of anabolic steroids in human hair using LC–MS/MS. Steroids 75(10):710–714
Balikova M (2005) Hair analysis for drug abuse. Plausibility of interpretation. Biomed Papers-palacky Univ Olomouc 149(2):199
Salomone A, Gerace E, D’Urso F, Di Corcia D, Vincenti M (2012) Simultaneous analysis of several synthetic cannabinoids, THC, CBD and CBN, in hair by ultra high performance liquid chromatography tandem mass spectrometry. Method validation and application to real samples. J Mass Spectrom 47(5):604–610
Wada M, Ikeda R, Kuroda N, Nakashima K (2010) Analytical methods for abused drugs in hair and their applications. Anal Bioanal Chem 397(3):1039–1067
Barbosa J, Faria J, Carvalho F, Pedro M, Queirós O, Moreira R, Dinis-Oliveira RJ (2013) Hair as an alternative matrix in bioanalysis. Bioanalysis 5(8):895–914
Kidwell D, Smith F (2007) Passive exposure, decontamination procedures, cut-offs and bias: pitfalls in the interpretation of hair analysis results for cocaine use. In: Kintz P (ed) Analytical and practical aspects of drug testing in hair. CRC Press, Boca Raton, pp 25–72
Stout PR, Ropero-Miller JD, Baylor MR, Mitchell JM (2006) External contamination of hair with cocaine: evaluation of external cocaine contamination and development of performance-testing materials. J Anal Toxicol 30(8):490–500
Ropero-Miller JD, Huestis MA, Stout PR (2012) Cocaine analytes in human hair: evaluation of concentration ratios in different cocaine sources, drug-user populations and surface-contaminated specimens. J Anal Toxicol 36(6):390–398
Kintz P (2012) Value of the concept of minimal detectable dosage in human hair. Forensic Sci Int 218(1):28–30
Kintz P, Villain M, Cheze M, Pepin G (2005) Identification of alprazolam in hair in two cases of drug-facilitated incidents. Forensic Sci Int 153(2):222–226
Skopp G, Strohbeck-Kuehner P, Mann K, Hermann D (2007) Deposition of cannabinoids in hair after long-term use of cannabis. Forensic Sci Int 170(1):46–50
Huestis MA, Henningfield JE, Cone EJ (1992) Blood cannabinoids. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol 16(5):276–282
Kim JY, Suh S, In MK, Paeng K-J, Chung BC (2005) Simultaneous determination of cannabidiol, cannabinol, and gD9-tetrahydrocannabinol in human hair by gas chromatography-mass spectrometryin human hair by gas chromatography–mass spectrometry. Arch Pharmacal Res 28(9):1086–1091
Kim JY, Cheong JC, Lee JI, In MK (2011) Improved gas chromatography negative ion chemical ionization tandem mass spectrometric method for determination of 11-nor-Δ 9-tetrahydrocannabinol-9-carboxylic acid in hair using mechanical pulverization and bead-assisted liquid-liquid extraction. Forensic Sci Int 206(1):e99–e102
Kim JY, In MK (2007) Determination of 11 nor Δ9-tetrahydrocannabinol 9 carboxylic acid in hair using gas chromatography/tandem mass spectrometry in negative ion chemical ionization mode. Rapid Commun Mass Spectrom 21(7):1339–1342
Auwärter V, Wohlfarth A, Traber J, Thieme D, Weinmann W (2010) Hair analysis for Δ9-tetrahydrocannabinolic acid A—new insights into the mechanism of drug incorporation of cannabinoids into hair. Forensic Sci Int 196(1–3):10–13
Nadulski T, Pragst F (2007) Simple and sensitive determination of Δ 9-tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace solid phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B 846(1):78–85
Moore C, Rana S, Coulter C, Feyerherm F, Prest H (2006) Application of two-dimensional gas chromatography with electron capture chemical ionization mass spectrometry to the detection of 11-nor-Δ9-Tetrahydrocannabinol-9-carboxylic Acid (THC-COOH) in Hair. J Anal Toxicol 30(3):171–177
Emídio ES, de Menezes Prata V, Dórea HS (2010) Validation of an analytical method for analysis of cannabinoids in hair by headspace solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry. Anal Chim Acta 670(1):63–71
Moosmann B, Roth N, Auwärter V (2014) Hair analysis for THCA-A, THC and CBN after passive in vivo exposure to marijuana smoke. Drug Test Anal 6(1–2):119–125
Merola G, Gentili S, Tagliaro F, Macchia T (2010) Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal Bioanal Chem 397(7):2987–2995
Di Corcia D, D’urso F, Gerace E, Salomone A, Vincenti M (2012) Simultaneous determination in hair of multiclass drugs of abuse (including THC) by ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B 899:154–159
Domínguez-Romero JC, García-Reyes JF, Molina-Díaz A (2011) Screening and quantitation of multiclass drugs of abuse and pharmaceuticals in hair by fast liquid chromatography electrospray time-of-flight mass spectrometry. J Chromatogr B 879(22):2034–2042
Tsujikawa K, Saiki F, Yamamuro T, Iwata YT, Abe R, Ohashi H, Kaigome R, Yamane K, Kuwayama K, Kanamori T (2016) Development of a novel immunoassay for herbal cannabis using a new fluorescent antibody probe, “Ultra Quenchbody”. Forensic Sci Int 266:541–548
Fernandez P, Lago M, Lorenzo R, Carro A, Bermejo A, Tabernero M (2009) Optimization of a rapid microwave-assisted extraction method for the simultaneous determination of opiates, cocaine and their metabolites in human hair. J Chromatogr B 877(18):1743–1750
Chang Y-J, Chao M-R, Chen S-C, Chen C-H, Chang Y-Z (2014) A high-throughput method based on microwave-assisted extraction and liquid chromatography–tandem mass spectrometry for simultaneous analysis of amphetamines, ketamine, opiates, and their metabolites in hair. Anal Bioanal Chem 406(9–10):2445–2455
Musshoff F, Lachenmeier K, Lichtermann D, Madea B (2009) Cocaine and opiate concentrations in hair from subjects in a heroin maintenance program in comparison to a methadone substituted group. Int J Legal Med 123(5):363–369
Míguez-Framil M, Cabarcos P, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2013) Matrix solid phase dispersion assisted enzymatic hydrolysis as a novel approach for cocaine and opiates isolation from human hair. J Chromatogr A 1316:15–22
Sergi M, Napoletano S, Montesano C, Iofrida R, Curini R, Compagnone D (2013) Pressurized-liquid extraction for determination of illicit drugs in hair by LC–MS–MS. Anal Bioanal Chem 405(2–3):725–735
Míguez-Framil M, Moreda-Piñeiro A, Bermejo-Barrera P, Álvarez-Freire I, Tabernero MJ, Bermejo AM (2010) Matrix solid-phase dispersion on column clean-up/pre-concentration as a novel approach for fast isolation of abuse drugs from human hair. J Chromatogr A 1217(41):6342–6349
Schiavone S, Marsili R, Iuliano G, Ghizzoni O, Chiarotti M (2007) Cocaine analysis in hair: solid-phase microextraction (SPME) versus supercritical fluid extraction (SFE). Can Soc Forensic Sci J 40(3):143–149
Capiau S, Alffenaar J-W, Stove CP (2016) Alternative sampling strategies for therapeutic drug monitoring, clinical challenges in therapeutic drug monitoring. Elsevier, pp 279–336. https://www.sciencedirect.com/science/article/pii/B9780128020258000131
Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Kuwayama K, Inoue H (2009) Rapid identification and quantification of methamphetamine and amphetamine in hair by gas chromatography/mass spectrometry coupled with micropulverized extraction, aqueous acetylation and microextraction by packed sorbent. J Chromatogr A 1216(18):4063–4070
Koster RA, Alffenaar J-WC, Greijdanus B, Uges DR (2013) Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta 115:47–54
Skender L, Karačić V, Brčić I, Bagarić A (2002) Quantitative determination of amphetamines, cocaine, and opiates in human hair by gas chromatography/mass spectrometry. Forensic Sci Int 125(2):120–126
Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294(5549):2166–2170
Morini L, Vignali C, Polla M, Sponta A, Groppi A (2012) Comparison of extraction procedures for benzodiazepines determination in hair by LC–MS/MS. Forensic Sci Int 218(1):53–56
Pujol M-L, Cirimele V, Tritsch PJ, Villain M, Kintz P (2007) Evaluation of the IDS One-Step™ ELISA kits for the detection of illicit drugs in hair. Forensic Sci Int 170(2):189–192
Uhl M, Sachs H (2004) Cannabinoids in hair: strategy to prove marijuana/hashish consumption. Forensic Sci Int 145(2):143–147
Lendoiro E, Quintela Ó, de Castro A, Cruz A, López-Rivadulla M, Concheiro M (2012) Target screening and confirmation of 35 licit and illicit drugs and metabolites in hair by LC–MSMS. Forensic Sci Int 217(1):207–215
Moore C, Guzaldo F, Donahue T (2001) The Determination of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in hair using negative ion gas chromatography–mass spectrometry and high-volume injection. J Anal Toxicol 25(7):555–558
Selten J-P, Bosman IJ, de Boer D, Veen ND, van der Graaf Y, Maes RA, Kahn RS (2002) Hair analysis for cannabinoids and amphetamines in a psychosis incidence study. Eur Neuropsychopharmacol 12(1):27–30
Vogliardi S, Tucci M, Stocchero G, Ferrara SD, Favretto D (2015) Sample preparation methods for determination of drugs of abuse in hair samples: a review. Anal Chim Acta 857:1–27
Han S, Yang B-Z, Kranzler HR, Oslin D, Anton R, Farrer LA, Gelernter J (2012) Linkage analysis followed by association show NRG1 associated with cannabis dependence in African Americans. Biol Psychiat 72(8):637–644
Míguez-Framil M, Moreda-Piñeiro A, Bermejo-Barrera P, López P, Tabernero MJ, Bermejo AM (2007) Improvements on enzymatic hydrolysis of human hair for illicit drug determination by gas chromatography/mass spectrometry. Anal Chem 79(22):8564–8570
Baptista MJ, Monsanto PV, Pinho Marques EG, Bermejo A, Avila S, Castanheira AM, Margalho C, Barroso M, Vieira DN (2002) Hair analysis for D9-THC, D9-THC-COOH, CBN and CBD, by GC/MS-EI. Forensic Sci Int 128(1):66–78
Harun N, Anderson RA, Cormack PA (2010) Analysis of ketamine and norketamine in hair samples using molecularly imprinted solid-phase extraction (MISPE) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Anal Bioanal Chem 396(7):2449–2459
Ariffin MM, Miller EI, Cormack PA, Anderson RA (2007) Molecularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples. Anal Chem 79(1):256–262
Montesano C, Simeoni MC, Vannutelli G, Gregori A, Ripani L, Sergi M, Compagnone D, Curini R (2015) Pressurized liquid extraction for the determination of cannabinoids and metabolites in hair: detection of cut-off values by high performance liquid chromatography–high resolution tandem mass spectrometry. J Chromatogr A 1406:192–200
Schwilke EW, Schwope DM, Karschner EL, Lowe RH, Darwin WD, Kelly DL, Goodwin RS, Gorelick DA, Huestis MA (2009) Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC plasma pharmacokinetics during and after continuous high-dose oral THC. Clin Chem 55(12):2180–2189
Kronstrand R, Nyström I, Forsman M, Käll K (2010) Hair analysis for drugs in driver’s license regranting. A Swedish pilot study. Forensic Sci Int 196(1):55–58
Roth N, Moosmann B, AuwÃrter V (2013) Development and validation of an LCMS/MS method for quantification of Δ9-tetrahydrocannabinolic acid A (THCAA), THC, CBN and CBD in hair. J Mass Spectrom 48(2):227–233
Broecker S, Herre S, Pragst F (2012) General unknown screening in hair by liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (LCQTOF-MS). Forensic Sci Int 218(1):68–81
Breidi SE, Barker J, Petróczi A, Naughton DP (2012) Enzymatic digestion and selective quantification of underivatised delta-9-tetrahydrocannabinol and cocaine in human hair using gas chromatography–mass spectrometry. J Anal Methods Chem 2012:907893. https://doi.org/10.1155/2012/907893
Rodrigues Dizioli, de Oliveira C, Yonamine M, de Moraes Moreau RL (2007) Headspace solid phase microextraction of cannabinoids in human head hair samples. J Separ Sci 30(1):128–134
Minoli M, Angeli I, Ravelli A, Gigli F, Lodi F (2012) Detection and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in hair by GC/MS/MS in negative chemical ionization mode (NCI) with a simple and rapid liquid/liquid extraction. Forensic Sci Int 218(1):49–52
Duvivier WF, Beek TA, Pennings EJM, Nielen MWF (2014) Rapid analysis of Δ9 tetrahydrocannabinol in hair using direct analysis in real time ambient ionization orbitrap mass spectrometry. Rapid Commun Mass Spectrom 28(7):682–690
Backofen U, Hoffmann W, Matysik FM (2000) Determination of cannabinoids by capillary liquid chromatography with electrochemical detection. Biomed Chromatogr 14(1):49–52
Coulter C, Tuyay J, Taruc M, Moore C (2010) Semi-quantitative analysis of drugs of abuse, including tetrahydrocannabinol in hair using aqueous extraction and immunoassay. Forensic Sci Int 196(1):70–73
Han E, Yang W, Lee S, Kim E, In S, Choi H, Lee S, Chung H, myong Song J (2011) Establishment of the measurement uncertainty of 11-nor-D 9-tetrahydrocannabinol-9-carboxylic acid in hair. Forensic Sci Int 206(1):e85–e92
Han E, Park Y, Kim E, In S, Yang W, Lee S, Choi H, Lee S, Chung H, myong Song J (2011) Simultaneous analysis of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol in hair without different sample preparation and derivatization by gas chromatography–tandem mass spectrometry. J Pharm Biomed Anal 55(5):1096–1103
Gentili S, Torresi A, Marsili R, Chiarotti M, Macchia T (2002) Simultaneous detection of amphetamine-like drugs with headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B 780(1):183–192
Musshoff F, Junker HP, Lachenmeier DW, Kroener L, Madea B (2002) Fully automated determination of cannabinoids in hair samples using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Anal Toxicol 26(8):554–560
Musshoff F, Lachenmeier DW, Kroener L, Madea B (2003) Automated headspace solid-phase dynamic extraction for the determination of cannabinoids in hair samples. Forensic Sci Int 133(1):32–38
Sachs H, Dressler U (2000) Detection of THCCOOH in hair by MSD-NCI after HPLC clean-up. Forensic Sci Int 107(1):239–247
Huestis MA, Gustafson RA, Moolchan ET, Barnes A, Bourland JA, Sweeney SA, Hayes EF, Carpenter PM, Smith ML (2007) Cannabinoid concentrations in hair from documented cannabis users. Forensic Sci Int 169(2):129–136
Chiarotti M, Costamagna L (2000) Analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in biological samples by gas chromatography tandem mass spectrometry (GC/MS-MS). Forensic Sci Int 114(1):1–6
Marsili R, Martello S, Felli M, Fiorina S, Chiarotti M (2005) Hair testing for Δ9 THC-COOH by gas chromatography/tandem mass spectrometry in negative chemical ionization mode. Rapid Commun Mass Spectrom 19(11):1566–1568
Kintz P, Tracqui A, Mangin P (1992) Detection of drugs in human hair for clinical and forensic applications. Int J Legal Med 105(1):1–4
Pichini S, Marchei E, Martello S, Gottardi M, Pellegrini M, Svaizer F, Lotti A, Chiarotti M, Pacifici R (2015) Identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide (THC-COOH-glu) in hair by ultra-performance liquid chromatography tandem mass spectrometry as a potential hair biomarker of cannabis use. Forensic Sci Int 249:47–51
Míguez-Framil M, Cocho JÁ, Tabernero MJ, Bermejo AM, Moreda-Piñeiro A, Bermejo-Barrera P (2014) An improved method for the determination of Δ9-tetrahydrocannabinol, cannabinol and cannabidiol in hair by liquid chromatography–tandem mass spectrometry. Microchem J 117:7–17
Chung H, Park M, Hahn E, Choi H, Choi H, Lim M (2004) Recent trends of drug abuse and drug-associated deaths in Korea. Ann N Y Acad Sci 1025(1):458–464
Gottardo R, Sorio D, Musile G, Trapani E, Seri C, Serpelloni G, Tagliaro F (2014) Screening for synthetic cannabinoids in hair by using LC-QTOF MS: a new and powerful approach to study the penetration of these new psychoactive substances in the population. Med Sci Law 54(1):22–27
Han E, Choi H, Lee S, Chung H, Song JM (2011) A study on the concentrations of 11-nor-Δ 9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair root and whole hair. Forensic Sci Int 210(1):201–205
Doran GS, Deans R, De Filippis C, Kostakis C, Howitt JA (2017) Work place drug testing of police officers after THC exposure during large volume cannabis seizures. Forensic Sci Int 275:224–233
Taylor M, Lees R, Henderson G, Lingford-Hughes A, Macleod J, Sullivan J, Hickman M (2017) Comparison of cannabinoids in hair with self-reported cannabis consumption in heavy, light and non-cannabis users. Drug Alcohol Rev 36(2):220–226
Haney M, Malcolm RJ, Babalonis S, Nuzzo PA, Cooper ZD, Bedi G, Gray KM, McRae-Clark A, Lofwall MR, Sparenborg S (2016) Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology 41(8):1974
Purschke K, Heinl S, Lerch O, Erdmann F, Veit F (2016) Development and validation of an automated liquid-liquid extraction GC/MS method for the determination of THC, 11-OH-THC, and free THC-carboxylic acid (THC-COOH) from blood serum. Anal Bioanal Chem 408(16):4379–4388
Ettlinger J, Yegles M (2016) Influence of thermal hair straightening on cannabis and cocaine content in hair. Forensic Sci Int 265:13–16
Odoardi S, Valentini V, De Giovanni N, Pascali VL, Strano-Rossi S (2017) High-throughput screening for drugs of abuse and pharmaceutical drugs in hair by liquid-chromatography-high resolution mass spectrometry (LC-HRMS). Microchem J 133:302–310
Nestoros JN, Vakonaki E, Tzatzarakis MN, Alegakis A, Skondras MD, Tsatsakis AM (2017) Long lasting effects of chronic heavy cannabis abuse. Am J Addict 26(4):335–342
Mascini M, Montesano C, Perez G, Wang J, Compagnone D, Sergi M (2017) Selective solid phase extraction of JWH synthetic cannabinoids by using computationally designed peptides. Talanta 167:126–133
Tassoni G, Cippitelli M, Ottaviani G, Froldi R, Cingolani M (2016) Detection of cannabinoids by ELISA and GC–MS methods in a hair sample previously used to detect other drugs of abuse. J Anal Toxicol 40(6):408–413
Beasley E, Francese S, Bassindale T (2016) Detection and mapping of cannabinoids in single hair samples through rapid derivatization and matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 88(20):10328–10334
Tassoni G, Mirtella D, Zampi M, Ferrante L, Cippitelli M, Cognigni E, Froldi R, Cingolani M (2014) Hair analysis in order to evaluate drug abuse in driver’s license regranting procedures. Forensic Sci Int 244:16–19
Znaleziona J, Ginterová P, Petr J, Ondra P, Válka I, Ševčík J, Chrastina J, Maier V (2015) Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques—a review. Anal Chim Acta 874:11–25
Angeli I, Casati S, Ravelli A, Minoli M, Orioli M (2018) A novel single-step GC–MS/MS method for cannabinoids and 11-OH-THC metabolite analysis in hair. J Pharm Biomed Anal 155:1–6
Marchei E, Pellegrini M, Pacifici R, Palmi I, Lozano J, García-Algar Ó, Pichini S (2006) Quantification of Δ9-tetrahydrocannabinol and its major metabolites in meconium by gas chromatographic-mass spectrometric assay: assay validation and preliminary results of the “Meconium Project”. Ther Drug Monit 28(5):700–706
Dulaurent S, Gaulier J, Imbert L, Morla A, Lachâtre G (2014) Simultaneous determination of Δ 9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor-Δ 9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography–tandem mass spectrometry. Forensic Sci Int 236:151–156
Breitenbach S, Rowe WF, McCord B, Lurie IS (2016) Assessment of ultra high performance supercritical fluid chromatography as a separation technique for the analysis of seized drugs: applicability to synthetic cannabinoids. J Chromatogr A 1440:201–211
Cho HS, Cho B, Sim J, Baeck SK, In S, Kim E (2019) Detection of 11-nor-9-carboxy-tetrahydrocannabinol in the hair of drug abusers by LC–MS/MS analysis. Forensic Sci Int 295:219–225
Raes E, Verstraete A, Wennig R (2008) Drugs and driving, handbook of analytical separations. Elsevier, Amsterdam, pp 611–651