A review of advances in the preparation and application of polyaniline based thermoset blends and composites

Jolly Bhadra1, Asma Alkareem1, Noora Al‐Thani1
1Centre for Advanced Material, Qatar University, Doha, Qatar

Tóm tắt

AbstractFor several decades, forming blend and composite of polyaniline (PANI) with insulating polymers has been a widely studied research area because of the potential applications of such blends, which have a unique combination of mechanical properties, the processability of conventional polymers and the electrical property of conducting polymers. The current review paper will emphasize PANI composites or blends with thermosetting polymer matrices. The enhanced electro-mechanical properties of the blends and composites depend on the uniform dispersion of the PANI particle in polymer matrix. Therefore, considerable studies have focused on improving the distribution of PANI particles within the thermoset matrices. In this review paper, all the parameters and conditions that influence the surface morphology and application of PANI thermoset blends and composites will be described systematically. Recent progress on PANI based thermoset system with multifunctional ternary composites research will be highlighted in this paper. Furthermore, encouraging applications of different PANI thermoset composites and blends are discussed, such as flame-retardant materials, lightning damage suppression, metal ion removal, anticorrosive coating, electromagnetic shielding, conductive adhesives, and sensing materials.

Từ khóa


Tài liệu tham khảo

Saad GR, Ezz AA, Ahmed HA (2015) Cure kinetics, thermal stability, and dielectric properties of epoxy/barium ferrite/polyaniline composites. Thermochim Acta 599:84–94. https://doi.org/10.1016/j.tca.2014.11.013

Gu H, Tadakamalla S, Huang Y, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Polyaniline stabilized magnetite nanoparticle reinforced epoxy Nanocomposites. ACS Appl Mater Interfaces 4(10):5613–5624. https://doi.org/10.1021/am301529t

Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28(12):1701–1753. https://doi.org/10.1016/j.progpolymsci.2003.08.001

Xiong S et al (2019) Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 26(4):90. https://doi.org/10.1007/s10965-019-1749-x

Gao X-Z, Liu H-J, Cheng F, Chen Y (2016) Thermoresponsive polyaniline nanoparticles: preparation, characterization, and their potential application in waterborne anticorrosion coatings. Chem Eng J 283:682–691. https://doi.org/10.1016/j.cej.2015.08.015

Wu X, Lu C, Xu H, Zhang X, Zhou Z (2014) Biotemplate synthesis of Polyaniline@cellulose Nanowhiskers/natural rubber Nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity. ACS Appl Mater Interfaces 6(23):21078–21085. https://doi.org/10.1021/am505924z

Borsoi C, Zattera AJ, Ferreira CA (2016) Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Appl Surf Sci 364:124–132. https://doi.org/10.1016/j.apsusc.2015.12.140

Shabani-Nooshabadi M, Ghoreishi SM, Jafari Y, Kashanizadeh N (2014) Electrodeposition of polyaniline-montmorrilonite nanocomposite coatings on 316L stainless steel for corrosion prevention. J Polym Res 21(4):416. https://doi.org/10.1007/s10965-014-0416-5

Qiang Z et al (2014) The dielectric behavior and origin of high-k composites with very low percolation threshold based on unique multi-branched polyaniline/carbon nanotube hybrids and epoxy resin. Compos Part A Appl Sci Manuf 64:1–10

Tsotra P, Friedrich K (2004) Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties. Compos Sci Technol 64(15):2385–2391. https://doi.org/10.1016/j.compscitech.2004.05.003

Rong G, Zhou D, Pang J (2018) Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline. J Polym Res 25(3):66. https://doi.org/10.1007/s10965-018-1463-0

Jlassi K, Chandran S, Poothanari MA, Benna-Zayani M, Thomas S, Chehimi MM (2016) Clay/Polyaniline hybrid through Diazonium chemistry: conductive Nanofiller with unusual effects on interfacial properties of epoxy Nanocomposites. Langmuir 32(14):3514–3524. https://doi.org/10.1021/acs.langmuir.5b04457

Gu H et al (2013) Flame-retardant epoxy resin Nanocomposites reinforced with Polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52(23):7718–7728. https://doi.org/10.1021/ie400275n

Hu C, Li Y, Kong Y, Ding Y (2016) Preparation of poly(o-toluidine)/nano ZnO/epoxy composite coating and evaluation of its corrosion resistance properties. Synth Met 214:62–70. https://doi.org/10.1016/j.synthmet.2016.01.021

Ismail HK, Alesary HF, Mohammed MQ (2019) Synthesis and characterisation of polyaniline and/or MoO2/graphite composites from deep eutectic solvents via chemical polymerisation. J Polym Res 26(3):65. https://doi.org/10.1007/s10965-019-1732-6

Owino JHO et al (2008) Synthesis and characterization of poly (2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites. React Funct Polym 68(8):1239–1244

Saboor A, Khan AN, Jan R, Sharif S, Khan M (2018) Mechanical, dielectric and EMI shielding response of styrene acrylonitrile, styrene acrylonitrile/polyaniline polymer blends, upon incorporation of few layer graphene at low filler loadings. J Polym Res 25(12):248. https://doi.org/10.1007/s10965-018-1648-6

Kotanen CN, Tlili C, Guiseppi-Elie A (2013) Amperometric glucose biosensor based on electroconductive hydrogels. Talanta 103:228–235. https://doi.org/10.1016/j.talanta.2012.10.037

Zhang L, Li Y, Li L, Guo B, Ma PX (2014) Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. React Funct Polym 82:81–88. https://doi.org/10.1016/j.reactfunctpolym.2014.06.003

Shi Y, Peng L, Yu G (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7(30):12796–12806. https://doi.org/10.1039/C5NR03403E

Wallace GG, Mawad D, Lauto A (2016) Conductive Polymer Hydrogels. In: Kalia S (ed) Polymeric Hydrogels as Smart Biomaterials. Springer International Publishing, Cham, pp 19–44

Stejskal J (2017) Conducting polymer hydrogels. Chem Pap 71(2):269–291. https://doi.org/10.1007/s11696-016-0072-9

Chevalier JW, Bergeron JY, Dao LH (1992) Synthesis, characterization, and properties of poly(N-alkylanilines). Macromolecules 25(13):3325–3331. https://doi.org/10.1021/ma00039a001

Schomburg KC, McCarley RL (2001) Surface-confined monomers on electrode surfaces. 11. Electrochemical and infrared spectroscopic characteristics of aniline-terminated Alkanethiol monolayers on au electrochemically treated in nonaqueous media. Langmuir 17(6):1993–1998. https://doi.org/10.1021/la0010222

Kathirgamanathan P (1993) Curable electrically conductive resins with polyaniline fillers. Polymer (Guildf) 34(13):2907–2908. https://doi.org/10.1016/0032-3861(93)90141-V

Rawat NK, Pathan S, Sinha AK, Ahmad S (2016) Conducting poly(o-anisidine) nanofibre dispersed epoxy-siloxane composite coatings: synthesis, characterization and corrosion protective performance. New J Chem 40(1):803–817. https://doi.org/10.1039/C5NJ02295A

Hino T, Taniguchi S, Kuramoto N (2006) Syntheses of conductive adhesives based on epoxy resin and polyanilines by using N-tert-butyl-5-methylisoxazolium perchlorate as a thermally latent curing reagent. J Polym Sci Part A Polym Chem 44(2):718–726. https://doi.org/10.1002/pola.21085

Jeevananda T, Siddaramaiah (2003) Synthesis and characterization of polyaniline filled PU/PMMA interpenetrating polymer networks. Eur Polym J 39(3):569–578. https://doi.org/10.1016/S0014-3057(02)00272-0

Tsotra P, Gryshchuk O, Friedrich K (2005) Morphological studies of epoxy/Polyaniline blends. Macromol Chem Phys 206(7):787–793. https://doi.org/10.1002/macp.200400504

Jafarzadeh S, Claesson PM, Pan J, Thormann E (2014) Direct measurement of colloidal interactions between Polyaniline surfaces in a UV-curable coating formulation: the effect of surface Hydrophilicity/hydrophobicity and resin composition. Langmuir 30(4):1045–1054. https://doi.org/10.1021/la4035062

Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2013) Polyurethane conductive blends and composites: synthesis and applications perspective. J Mater Sci 48(1):67–80. https://doi.org/10.1007/s10853-012-6658-x

Putson C, Jaaoh D, Muensit N (2016) Large electromechanical strain at low electric field of modified polyurethane composites for flexible actuators. Mater Lett 172:27–31. https://doi.org/10.1016/j.matlet.2016.02.131

Jaaoh D, Putson C, Muensit N (2016) Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline. Compos Sci Technol 122:97–103. https://doi.org/10.1016/j.compscitech.2015.11.020

Tian M et al (2016) Electromechanical deformation sensors based on polyurethane/polyaniline electrospinning nanofibrous mats. Synth Met 219:11–19. https://doi.org/10.1016/j.synthmet.2016.05.005

Liu B-T, Wang D-H, Syu J-R, Lin S-H (2014) Enhanced electrical conductivity of polyurethane-polyaniline composites containing core–shell particles through conductive-shell effect. J Taiwan Inst Chem Eng 45(4):2047–2051. https://doi.org/10.1016/j.jtice.2014.03.016

Chen C-H, Kan Y-T, Mao C-F, Liao W-T, Hsieh C-D (2013) Fabrication and characterization of water-based polyurethane/polyaniline conducting blend films. Surf Coat Technol 231:71–76. https://doi.org/10.1016/j.surfcoat.2012.03.056

Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2013) Synthesis, characterization and corrosion evaluation on new cationomeric polyurethane water dispersions and their polyaniline composites. Prog Org Coat 76(4):639–647. https://doi.org/10.1016/j.porgcoat.2012.12.009

Lu J, Moon K-S, Kim B-K, Wong CP (2007) High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer (Guildf) 48(6):1510–1516. https://doi.org/10.1016/j.polymer.2007.01.057

Soares BG, Celestino ML, Magioli M, Moreira VX, Khastgir D (2010) Synthesis of conductive adhesives based on epoxy resin and polyaniline.DBSA using the in situ polymerization and physical mixing procedures. Synth Met 160(17):1981–1986. https://doi.org/10.1016/j.synthmet.2010.07.021

Malmonge JA, Campoli CS, Malmonge LF, Kanda DHF, Mattoso LHC, Chierice GO (2001) Effect of the doping medium on blends of polyurethane and polyaniline. Synth Met 119(1):87–88. https://doi.org/10.1016/S0379-6779(00)00813-4

Ramaprasad AT, Rao V, Sanjeev G, Ramanani SP, Sabharwal S (2009) Grafting of polyaniline onto the radiation crosslinked chitosan. Synth Met 159(19):1983–1990. https://doi.org/10.1016/j.synthmet.2009.07.006

Yang X, Zhao T, Yu Y, Wei Y (2004) Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network. Synth Met 142(1):57–61. https://doi.org/10.1016/j.synthmet.2003.07.012

Moreira VX, Garcia FG, Soares BG (2006) Conductive epoxy/amine system containing polyaniline doped with dodecylbenzenesulfonic acid. J Appl Polym Sci 100(5):4059–4065. https://doi.org/10.1002/app.23238

Tiitu M, Talo A, Forsén O, Ikkala O (2005) Aminic epoxy resin hardeners as reactive solvents for conjugated polymers: polyaniline base/epoxy composites for anticorrosion coatings. Polymer (Guildf) 46(18):6855–6861. https://doi.org/10.1016/j.polymer.2005.05.119

Jafarzadeh S et al (2011) Toward homogeneous nanostructured Polyaniline/resin blends. ACS Appl Mater Interfaces 3(5):1681–1691. https://doi.org/10.1021/am2002179

Jang J, Bae J, Lee K (2005) Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer (Guildf) 46(11):3677–3684. https://doi.org/10.1016/j.polymer.2005.03.030

Fu T, Liu J, Wang J, Na H (2009) Cure kinetics and conductivity of rigid rod epoxy with polyaniline as a curing agent. Polym Compos 30(10):1394–1400. https://doi.org/10.1002/pc.20703

Palaniappan S, Sreedhar B, Nair SM (2001) Polyaniline as a curing agent for epoxy resin: cure kinetics by differential scanning Calorimetry. Macromol Chem Phys 202(7):1227–1231. https://doi.org/10.1002/1521-3935(20010401)202:7<1227::AID-MACP1227>3.0.CO;2-3

Rodrigues PC, Akcelrud L (2003) Networks and blends of polyaniline and polyurethane: correlations between composition and thermal, dynamic mechanical and electrical properties. Polymer (Guildf) 44(22):6891–6899. https://doi.org/10.1016/j.polymer.2003.08.024

Rodrigues PC, Lisboa-Filho PN, Mangrich AS, Akcelrud L (2005) Polyaniline/polyurethane networks. II. A spectroscopic study. Polymer (Guildf) 46(7):2285–2296. https://doi.org/10.1016/j.polymer.2005.01.020

Perrin FX, Oueiny C (2017) Polyaniline thermoset blends and composites. React Funct Polym 114:86–103. https://doi.org/10.1016/j.reactfunctpolym.2017.03.009

Kumar V et al (2015) Mechanical and electrical properties of PANI-based conductive thermosetting composites. J Reinf Plast Compos 34(16):1298–1305

Weng C-J et al (2011) Mechanically and thermally enhanced intrinsically Dopable polyimide membrane with advanced gas separation capabilities. Macromolecules 44(15):6067–6076. https://doi.org/10.1021/ma201130s

Desvergne S, Gasse A, Pron A (2011) Electrical characterization of polyaniline-based adhesive blends. J Appl Polym Sci 120(4):1965–1973. https://doi.org/10.1002/app.33292

Kumar V, Yokozeki T, Goto T, Takahashi T (2016) Synthesis and characterization of PANI-DBSA/DVB composite using roll-milled PANI-DBSA complex. Polymer (Guildf) 86:129–137. https://doi.org/10.1016/j.polymer.2016.01.054

Yu M, Qi S, Fu J, Zhu M, Chen D (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol 139:36–46. https://doi.org/10.1016/j.compscitech.2016.12.010

Merlini C et al (2014) Polyaniline-coated coconut fibers: structure, properties and their use as conductive additives in matrix of polyurethane derived from castor oil. Polym Test 38:18–25. https://doi.org/10.1016/j.polymertesting.2014.06.005

Work W, Horie K, Hess M, Stepto R (2004) Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC recommendations 2004). Pure Appl Chem - Pure Appl Chem 76:1985–2007. https://doi.org/10.1351/pac200476111985

Oral I (2015) Ultrasonic characterization of conductive epoxy resin/polyaniline composites. J Appl Polym Sci 132(45). https://doi.org/10.1002/app.42748

Wan M, Yadav RR, Singh D, Sridhar Panday M, Rajendran V (2016) Temperature dependent ultrasonic and thermo-physical properties of polyaniline nanofibers reinforced epoxy composites. Compos Part B Eng 87:40–46. https://doi.org/10.1016/j.compositesb.2015.10.011

Jia W, Tchoudakov R, Segal E, Narkis M, Siegmann A (2004) Electrically conductive composites based on epoxy resin containing polyaniline–DBSA- and polyaniline–DBSA-coated glass fibers. J Appl Polym Sci 91(2):1329–1334. https://doi.org/10.1002/app.13301

Jia QM, Li JB, Wang LF, Zhu JW, Zheng M (2007) Electrically conductive epoxy resin composites containing polyaniline with different morphologies. Mater Sci Eng A 448(1):356–360. https://doi.org/10.1016/j.msea.2006.09.065

Zhang X, He Q, Gu H, Colorado HA, Wei S, Guo Z (2013) Flame-retardant electrical conductive Nanopolymers based on Bisphenol F epoxy resin reinforced with Nano Polyanilines. ACS Appl Mater Interfaces 5(3):898–910. https://doi.org/10.1021/am302563w

Tsotra P, Friedrich K (2004) Thermal, mechanical, and electrical properties of epoxy resin/polyaniline-dodecylbenzenesulfonic acid blends. Synth Met 143(2):237–242. https://doi.org/10.1016/j.synthmet.2003.12.016

Liu C-D, Lee S-N, Ho C-H, Han J-L, Hsieh K-H (2008) Electrical properties of well-dispersed Nanopolyaniline/epoxy hybrids prepared using an absorption-transferring process. J Phys Chem C 112(41):15956–15960. https://doi.org/10.1021/jp803437v

Pramanik S, Hazarika J, Kumar A, Karak N (2013) Castor oil based Hyperbranched poly(ester amide)/Polyaniline Nanofiber Nanocomposites as antistatic materials. Ind Eng Chem Res 52(16):5700–5707. https://doi.org/10.1021/ie4002603

de Azevedo WM, de Souza JM, de Melo JV (1999) Semi-interpenetrating polymer networks based on polyaniline and polyvinyl alcohol–glutaraldehyde. Synth Met 100(3):241–248. https://doi.org/10.1016/S0379-6779(98)01481-7

Faez R, Schuster RH, De Paoli M-A (2002) A conductive elastomer based on EPDM and polyaniline: II. Effect of the crosslinking method. Eur Polym J 38(12):2459–2463. https://doi.org/10.1016/S0014-3057(02)00133-7

Siddhanta SK, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly(2-acrylamido-2-methyl propanesulphonicacid). Polymer (Guildf) 46(9):2993–3000. https://doi.org/10.1016/j.polymer.2005.01.084

Zeghina S, Wojkiewicz J-L, Lamouri S, Belaabed B, Redon N (2014) Enhanced microwave absorbing properties of lightweight films based on polyaniline/aliphatic polyurethane composites in X band. J Appl Polym Sci 131(21). https://doi.org/10.1002/app.40961

Sayhi M, Haine N, Belaabed B, Lamouri S, Vigneras V (2015) Study of electrical conductivity of Para-toluene sulfonic acid doped Polyaniline/polyester-based polyurethane blends in the S-band frequency range. J Macromol Sci Part B 54(10):1183–1195. https://doi.org/10.1080/00222348.2015.1079090

Špírková M, Stejskal J, Quadrat O (1999) Electrically anisotropic polyaniline-polyurethane composites. Synth Met 102(1):1264–1265. https://doi.org/10.1016/S0379-6779(98)01461-1

Dorraji MSS, Rasoulifard MH, Khodabandeloo MH, Rastgouy-Houjaghan M, Zarajabad HK (2016) Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: preparation and optimization. Appl Surf Sci 366:210–218. https://doi.org/10.1016/j.apsusc.2016.01.102

Hirano Y et al (2016) Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos Sci Technol 127:1–7. https://doi.org/10.1016/j.compscitech.2016.02.022

Kalasad MN et al (2008) Synthesis and characterization of polyaniline rubber composites. Compos Sci Technol 68(7):1787–1793. https://doi.org/10.1016/j.compscitech.2008.02.001

Gagné M, Therriault D (2014) Lightning strike protection of composites. Prog Aerosp Sci 64:1–16. https://doi.org/10.1016/j.paerosci.2013.07.002

Feraboli P, Kawakami H (2010) Damage of carbon/epoxy composite plates subjected to mechanical impact and simulated lightning. J Aircr 47(3):999–1012. https://doi.org/10.2514/1.46486

Yokozeki T et al (2015) Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix. Compos Sci Technol 117:277–281. https://doi.org/10.1016/j.compscitech.2015.06.016

Feraboli P, Miller M (2009) Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos Part A Appl Sci Manuf 40(6):954–967. https://doi.org/10.1016/j.compositesa.2009.04.025

Ogasawara T, Hirano Y, Yoshimura A (2010) Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos Part A Appl Sci Manuf 41(8):973–981. https://doi.org/10.1016/j.compositesa.2010.04.001

Hirano Y, Katsumata S, Iwahori Y, Todoroki A (2010) Artificial lightning testing on graphite/epoxy composite laminate. Compos Part A Appl Sci Manuf 41(10):1461–1470. https://doi.org/10.1016/j.compositesa.2010.06.008

Abdelal G, Murphy A (2014) Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos Struct 109:268–278. https://doi.org/10.1016/j.compstruct.2013.11.007

Dong Q, Guo Y, Sun X, Jia Y (2015) Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike. Polymer (Guildf) 56:385–394. https://doi.org/10.1016/j.polymer.2014.11.029

Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36(11):1525–1535. https://doi.org/10.1016/j.compositesa.2005.02.007

Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037. https://doi.org/10.1063/1.1466880

Yokozeki T, Iwahori Y, Ishiwata S (2007) Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos Part A Appl Sci Manuf 38(3):917–924. https://doi.org/10.1016/j.compositesa.2006.07.005

Yokozeki T, Iwahori Y, Ishiwata S, Enomoto K (2007) Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos Part A Appl Sci Manuf 38(10):2121–2130. https://doi.org/10.1016/j.compositesa.2007.07.002

Inam F, Wong DWY, Kuwata M, Peijs T (2010) Multiscale hybrid micro-Nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater 2010:453420. https://doi.org/10.1155/2010/453420

Fry D et al (2006) Rheo-optical studies of carbon nanotube suspensions. J Chem Phys 124(5):054703. https://doi.org/10.1063/1.2159488

Fry D et al (2006) Rheo-optical studies of carbon nanotube suspension. J Chem Phys 124(5):054703. https://doi.org/10.1063/1.2159488

Talo A, Passiniemi P, Forsén O, Yläsaari S (1997) Polyaniline/epoxy coatings with good anti-corrosion properties. Synth Met 85(1):1333–1334. https://doi.org/10.1016/S0379-6779(97)80258-5

Lu W-K, Elsenbaumer RL, Wessling B (1995) Corrosion protection of mild steel by coatings containing polyaniline. Synth Met 71(1):2163–2166. https://doi.org/10.1016/0379-6779(94)03204-J

Tallman DE, Spinks G, Dominis A, Wallace GG (2002) Electroactive conducting polymers for corrosion control. J Solid State Electrochem 6(2):73–84. https://doi.org/10.1007/s100080100212

Zhang H, Wang J, Liu X, Wang Z, Wang S (2013) High performance self-healing epoxy/polyamide protective coating containing epoxy microcapsules and Polyaniline Nanofibers for mild carbon steel. Ind Eng Chem Res 52(30):10172–10180. https://doi.org/10.1021/ie400666a

Wessling B (1994) Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes. Adv Mater 6(3):226–228. https://doi.org/10.1002/adma.19940060309

Perrin FX, Phan TA, Nguyen DL (2015) Synthesis and characterization of polyaniline nanoparticles in phosphonic acid amphiphile aqueous micellar solutions for waterborne corrosion protection coatings. J Polym Sci Part A Polym Chem 53(13):1606–1616. https://doi.org/10.1002/pola.27602

Igberase E, Osifo P (2015) Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. J Ind Eng Chem 26:340–347. https://doi.org/10.1016/j.jiec.2014.12.007

Liu D, Sun D, Li Y (2010) Removal of cu(II) and cd(II) from aqueous solutions by Polyaniline on sawdust. Sep Sci Technol 46(2):321–329. https://doi.org/10.1080/01496395.2010.504201

Madhava Rao M, Ramesh A, Rao GPC, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129(1):123–129. https://doi.org/10.1016/j.jhazmat.2005.08.018

Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42(3):237–247. https://doi.org/10.1016/j.seppur.2004.08.002

Gyananath G, Balhal DK (2012) Removal of lead (II) from aqueous solutions by adsorption onto chitosan beads. Cellul Chem Technol 46:121–124

Kantipuly C, Katragadda S, Chow A, Gesser HD (1990) Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 37(5):491–517. https://doi.org/10.1016/0039-9140(90)80075-Q

Lv P, Bin Y, Li Y, Chen R, Wang X, Zhao B (2009) Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer (Guildf) 50:5675–5680. https://doi.org/10.1016/j.polymer.2009.10.004

Igberase E, Osifo P, Ofomaja A (2014) The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J Environ Chem Eng 2(1):362–369. https://doi.org/10.1016/j.jece.2014.01.008

Fini M et al (2002) A bone substitute composed of polymethylmethacrylate and α-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation. Biomaterials 23(23):4523–4531. https://doi.org/10.1016/S0142-9612(02)00196-5