A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, 2005, Developments in mineral processing, Elsevier Sci., 15, 1
Agangi, 2013, Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa, Econ. Geol., 108, 1243, 10.2113/econgeo.108.6.1243
An, 2010, Native antimony in the Baogutu gold deposit (west Junggar, NW China): Its occurrence and origin, Ore Geol. Rev., 37, 214, 10.1016/j.oregeorev.2010.03.005
Auclair, 1987, Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13°N, East Pacific Rise, Can. Mineral., 25, 577
Barker, 2009, Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes from in pyrite from Carlin-type gold deposits, Econ. Geol., 104, 897, 10.2113/econgeo.104.7.897
Bell, 2004, Geology of the gold deposit of the Yanacocha deposit, northern Peru, Australasian Inst. Min. Metal. Publ. Series, 5, 105
Berger, 2014, The Lepanto Cu–Au deposit, Philippines: a fossil hyperacidic volcanic lake complex, J. Volcanol. Geoth. Res., 271, 70, 10.1016/j.jvolgeores.2013.11.019
Brown, 2003, Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia, Aust. J. Earth Sci., 50, 19, 10.1046/j.1440-0952.2003.00971.x
Brugger, 2012, XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 degrees C, 800 bar, Am. Mineral., 97, 1519, 10.2138/am.2012.4167
Cepedal, 2008, Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, northwestern Spain, Can. Mineral., 46, 233, 10.3749/canmin.46.1.233
Cepedal, 2000, Origin and evolution of the calcic and magnesian skarns hosting the El Valle-Boinas copper-gold deposit, Asturias (Spain), J. Geochem. Explor., 71, 119, 10.1016/S0375-6742(00)00149-7
Chouinard, 2005, Crystallographic controls on trace-element incorporation in auriferous pyrite from Pascua epithermal high-sulfidation deposit: Chile-Argentina, Can. Mineral., 43, 951, 10.2113/gscanmin.43.3.951
Cioacă, 2014, Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: a reconnaissance study, Ore Geol. Rev., 63, 22, 10.1016/j.oregeorev.2014.04.016
Ciobanu, 2006, Preface-special issue: telluride and selenide minerals in gold deposits - how and why?, Miner. Petrol., 87, 163, 10.1007/s00710-006-0133-9
Ciobanu, 2012, Gold-telluride nanoparticles revealed in arsenic-free pyrite, Am. Mineral., 97, 1515, 10.2138/am.2012.4207
Cline, 2001, Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada, Econ. Geol., 96, 75, 10.2113/gsecongeo.96.1.75
Cline, 2000, Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA, Eur. J. Mineral., 12, 195, 10.1127/ejm/12/1/0195
Cline, 2005, Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models, Econ. Geol., 100, 451
Cook, 2009, Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China), Chem. Geol., 264, 101, 10.1016/j.chemgeo.2009.02.020
Cook, 2009, And the participants of IGCP-486,Understanding gold-(silver)-telluride-(selenide) mineral deposits, Episodes, 32, 249, 10.18814/epiiugs/2009/v32i4/002
Cooke, 2001, Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition, Econ. Geol., 96, 109
Craig, 1993, The metamorphism of pyrite and pyritic ores: an overview, Mineral. Mag., 57, 3, 10.1180/minmag.1993.057.386.02
Craig, 1998, Pyrite: physical and chemical textures, Mineral. Deposita, 57, 3
Deditius, 2009, Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite, Am. Mineral., 94, 394, 10.2138/am.2009.3116
Deditius, 2009, Decoupled geochemical behavior of As and Cu in hydrothermal systems, Geology, 37, 707, 10.1130/G25781A.1
Deditius, 2008, A proposed new type of arsenian pyrite: composition, nanostructure and geochemical sgnificance, Geochim. Cosmochim. Acta, 72, 2919, 10.1016/j.gca.2008.03.014
Deditius, 2011, Trace metal nanoparticles in pyrite, Ore Geol. Rev., 42, 32, 10.1016/j.oregeorev.2011.03.003
Deditius, 2016, Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite, Am. Mineral., 101, 1451, 10.2138/am-2016-5603
Deditius, 2014, The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits, Geochim. Cosmochim. Acta, 140, 644, 10.1016/j.gca.2014.05.045
Deol, 2012, LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: implications for ore genesis and gold remobilization, Chem. Geol., 326, 72, 10.1016/j.chemgeo.2012.07.017
Deyell, 2004, Isotopic evidence for magmatic dominated epithermal processes in the El Indio-Pascua Au-Cu-Ag belt and relationship to geomorphologic setting, Econ. Geol., 11, 55
Distler, 2004, Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia, Ore Geol. Rev., 24, 7, 10.1016/j.oregeorev.2003.08.007
Duran, 2015, Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration, J. Geochem. Explor., 158, 223, 10.1016/j.gexplo.2015.08.002
Dye, M.D., 2015. Mineralogical characterization and paragensis of the Cripple Creek deposit, Colorado. M.S. thesis, Colordao School of Mines, pp. 1–115.
Dye, 2012, The crystal structure and genesis of krennerite, Au3AgTe8, Can. Mineral., 50, 363, 10.3749/canmin.50.1.119
Einaudi, M.T., Hedenquist, J.W., Inan, E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: Simmons, S.F., Graham, I.J. (Eds.), Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth. Econ. Geol. Spec. Pub. 10, pp. 285–314.
Emsbo, 2003, Origin of high- grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin Trend, Nevada, Econ. Geol., 98, 1069, 10.2113/gsecongeo.98.6.1069
Fleet, 1993, Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS, Can. Mineral., 31, 1
Gao, 2017, Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China, Ore Geol. Rev., 80, 166, 10.1016/j.oregeorev.2016.06.023
Garnier, 2007, Carlin-type gold mineralization at Saint-Andre-de-Ristigouche, Gaspe Peninsula (Quebec), Canadian Appalachians, Mineral. Deposita, 42, 639, 10.1007/s00126-007-0133-7
Goldfarb, 2005, Distribution, character, and genesis of gold deposits in metamorphic terranes, Econ. Geol., 100, 407
Green, 2009, Estimates of Te and In prices from direct mining of known ores, Prog. Photovolt: Res. Appl., 17, 347, 10.1002/pip.899
Griffin, 1991, Pyrite Geochemistry in the North Arm Epithermal Ag-Au Deposit, Queensland, Australia - a Proton-Microprobe Study, Can. Mineral., 29, 185
Grundler, 2013, Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition, Geochim. Cosmochim. Acta, 120, 298, 10.1016/j.gca.2013.06.009
Hart, 2002, Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events, Mineral. Deposita, 37, 326, 10.1007/s00126-001-0239-2
Harvey, J., Myers, S., KLein, T., 2004. Yanacocha gold district, northern Peru, Pacific Rim Congress. Australasian Institute of Mining and Meallurgy, Proceedings, Bali, Indonesia pp. 445–449.
Hayba, 1986, Geologic, mineralogic, and geochemical characteristic of volcanic- hosted epithermal precious-metal deposits, Rev. Econ. Geol., 2, 129
Ho, 1995, Lead isotope systematics and pyrite trace element geochemistry of two granitoid-associated mesothermal gold deposits in the southeastern Lachlan fold belt, Econ. Geol., 90, 1818, 10.2113/gsecongeo.90.6.1818
Hofstra, 2000, Characteristics and models for Carlin-type gold deposits, Rev. Econ. Geol., 13, 163
Jannas, 1999, High-sulfidation deposit types in the El Indio district, Chile, Econ. Geol. Spec. Publ., 7, 219
Jannas, 1995, 1
Jensen, 2003, 1
Jensen, E.P. and Barton, M.D., 2000. Gold deposits related to alkaline magmatism. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. Rev. Econ. Geol. 13, pp. 279–314.
Jia, 2000, A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the Bendigo Gold Field, central Victoria, Australia, Econ. Geol., 95, 467
Keith, 2016, Trace element systematics of pyrite from submarine hydrothermal vents, Ore Geol. Rev., 72, 728, 10.1016/j.oregeorev.2015.07.012
Keith, 2016, Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus, Chem. Geol., 423, 7, 10.1016/j.chemgeo.2015.12.012
Kelley, 2016, Critical elements in alkaline igneous rock-related epithermal gold deposits, Rev. Econ. Geol., 16, 195
Kelley, 1998, Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado, Econ. Geol., 93, 981, 10.2113/gsecongeo.93.7.981
Kesler, S.E., Deditius, A.P., Chryssoulis, S., 2007. Geochemistry of Se and Te in arsenian pyrite: new evidence for the role of Se and Te hydrothermal complexes in Carlin and epithermal-type deposits. In: Kojonen, K. K., Cook, N. J., Ojala, V.J. (Eds.), Au–Ag–Te–Se deposits, Proceedings of the 2007 Field Workshop (Espoo, Finland, August 26–31, 2007). Geological Survey of Finland, vol. 53. pp. 85–95.
King, 2014, High-Sulfidation epithermal pyrite-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia, Econ. Geol., 109, 1705, 10.2113/econgeo.109.6.1705
Koelbl, 1995, Concepts for the identification and determination of selenium-compounds in the aquatic environment, Mar. Chem., 48, 185, 10.1016/0304-4203(94)00043-D
Koneev, 2005, Gold ore deposits of Uzbekistan: geochemistry and nanomineralogy of tellurium and selenium, Geochem. Min. Pet., 43, 102
Kouzmanov, 2010, Direct analysis of ore-precipitating fluids: combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals, Econ. Geol., 105, 351, 10.2113/gsecongeo.105.2.351
Kwak, 1990, Geochemical and temperature controls on ore mineralization at the emperor gold mine, Vatukoula, Fiji, J. Geochem. Explor., 36, 297, 10.1016/0375-6742(90)90059-J
Large, 2011, A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits, Econ. Geol., 106, 331, 10.2113/econgeo.106.3.331
Large, 2007, Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia, Econ. Geol., 102, 1233, 10.2113/gsecongeo.102.7.1233
Large, 2009, Gold and trace element zonation in pyrite using a laser imaging technique: implications of the timing of gold in orogenic and Carlin-style sediment-hosted deposits, Econ. Geol., 104, 635, 10.2113/gsecongeo.104.5.635
Layton-Matthews, 2008, Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada, Econ. Geol., 103, 61, 10.2113/gsecongeo.103.1.61
Li, 2007, Hydrothermal alteration and mineralization of middle jurassic dexing porphyry Cu-Mo deposit, southeast China, Res. Geol., 57, 409, 10.1111/j.1751-3928.2007.00032.x
Loftus-Hill, 1967, Cobalt, nickel and selenium in sulphides as indicators of ore genesis, Mineral Deposita, 2, 228
Loucks, 1999, Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions, Science, 284, 2159, 10.1126/science.284.5423.2159
Lussier, 2003, The geochemistry of selenium associated with coal waste in the Elk River Valley, Canada, Environ. Geol., 44, 905, 10.1007/s00254-003-0833-y
Mao, 2003, Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization?, Econ. Geol., 98, 517
Maslennikov, 2009, Study of Trace Element Zonation in vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS), Econ. Geol., 104, 1111, 10.2113/gsecongeo.104.8.1111
Morey, 2008, Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia, Econ. Geol., 103, 599, 10.2113/gsecongeo.103.3.599
Mueller, 2002, The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study, Mineral. Deposita, 37, 61, 10.1007/s00126-001-0230-y
Mumin, 1994, Gold mineralisation in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti gold belt, Ghana: remobalization of “invisible’ gold, Mineral. Deposita, 29, 445, 10.1007/BF00193506
Mumin, 1996, Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana: stable isotope geochemistry of carbonates, graphite, and quartz, Econ. Geol., 91, 135, 10.2113/gsecongeo.91.1.135
Muntean, 1990, Evolution of the Monte Negro Acid Sulfate Au-Ag Deposit, Pueblo Viejo, Dominican-Republic - Important Factors in Grade Development, Econ. Geol., 85, 1738, 10.2113/gsecongeo.85.8.1738
Muntean, 2011, Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits, Nature, 4, 122
Naden, J., Henney, P.J., 1995. Characterisation of gold from Fiji. British Geological Survey, Technical report WC/95/41, pp. 1–17.
Okrusch, 2007, The genesis of sulfide assemblages in the former wilhelmine mine, Spessart, avaria, Germany, Can. Mineral., 45, 723, 10.2113/gscanmin.45.4.723
Palenik, 2004, “Invisible” gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit, Am. Mineral., 89, 1359, 10.2138/am-2004-1002
Pals, 2003, Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji, Miner. Petrol., 79, 285, 10.1007/s00710-003-0013-5
Pals, 2003, Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: implications for gold distribution and deposition, Econ. Geol., 98, 479
Perkins, 2011, Extreme selenium and tellurium contamination in soils — An eighty year-oldindustrial legacy surrounding a Ni refinery in the Swansea Valley, Sci. Total Environ., 412–413, 162, 10.1016/j.scitotenv.2011.09.056
Qian, 2013, Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions, Geochim. Cosmochim. Acta, 100, 1, 10.1016/j.gca.2012.09.034
Reich, 2005, Solubility of gold in arsenian pyrite, Geochim. Cosmochim. Acta, 69, 2781, 10.1016/j.gca.2005.01.011
Reich, 2013, Pyrite as a record of hydrothermal fluid evolution in a porphyr copper system: a SIMS/EMPA trace element study, Geochim. Cosmochim. Acta, 104, 42, 10.1016/j.gca.2012.11.006
Revan, 2014, Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the Eastern Pontide orogenic belt (NE Turkey), Ore Geol. Rev., 63, 129, 10.1016/j.oregeorev.2014.05.006
Ridley, J.R., Diamond, L.W., 2000. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. In: Hagemann, S.E., Brown, P.E. (Eds.), Gold in 2000. Rev. Econ. Geol. 13,p. 13.
Rosua, 2003, Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almeria, SE Spain), Mineral. Mag., 67, 1059, 10.1180/0026461036750143
Ruano, 2000, Epithermal Cu-Au mineralization in the Palai-Islica deposit, Almeria, southeastern Spain: fluid-inclusion evidence for mixing of fluids as a guide to gold mineralization, Can. Mineral., 38, 553, 10.2113/gscanmin.38.3.553
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemisrty. Elsevier 3, pp. 1–64.
Savage, 2000, Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California, Appl. Geochem., 15, 1219, 10.1016/S0883-2927(99)00115-8
Scher, 2013, Fumarolic activity, acid-sulfate alteration, and high sulfidation epithermal precious metal mineralization in the crater of Kawah Ijen Volcano, Java, Indonesia, Econ. Geol., 108, 1099, 10.2113/econgeo.108.5.1099
Scherbarth, 2006, Mineralogical, petrological, stable isotope, and fluid inclusion characteristics of the Tuvatu gold-silver telluride deposit, Fiji: comparisons with the emperor deposit, Econ. Geol., 101, 135, 10.2113/gsecongeo.101.1.135
Schirmer, 2014, The ratio of tellurium and selenium in geological material as a possible paleo-redox proxy, Chem. Geol., 376, 44, 10.1016/j.chemgeo.2014.03.005
Seedorff, 2005, Porphyry deposits: characteristics and origin of hypogen features, Econ. Geol., 100, 251
Sibson, 1988, High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits, Geology, 16, 551, 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
Sillitoe, R.H., Hedenquist, J.W., 2003. Linkages between volcanic tectonic settings, ore-fluid compositions, and epithermal precious metals deposits. In: Simmons, S.F., Graham, I.J. (Eds.), Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth. Econ. Geol. Spec. Pub. 10, pp. 315–343.
Simmons, 2005, Geological characteristics of epithermal precious and base metal deposits, Econ. Geol., 100, 485
Simon, 1997, Phase relations among selenides, sulfides, tellurides, and oxides.II. Applications to selenide-bearing ore deposits, Econ. Geol., 92, 468, 10.2113/gsecongeo.92.4.468
Smith, 2014, Precious and base metal geochemistry and mineralogy of the Grasvally Norite-Pyroxenite-Anorthosite (GNPA) member, northern Bushveld Complex, South Africa: implications for a multistage emplacement, Mineral. Deposita, 49, 667, 10.1007/s00126-014-0515-6
Spry, 2006, The gold-vanadium-tellurium association at the Tuvatu gold-silver prospect, Fiji: conditions of ore deposition, Miner. Petrol., 87, 171, 10.1007/s00710-006-0128-6
Spry, 2004, Process mineralogy of gold: gold from Telluride-Bearing ores, JOM, 56, 60, 10.1007/s11837-004-0185-4
Su, 2008, Visible gold in arsenian pyrite at the Shuiyidong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation, Ore Geol. Rev., 33, 667, 10.1016/j.oregeorev.2007.10.002
Su, 2009, Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids, Econ. Geol., 104, 73, 10.2113/gsecongeo.104.1.73
Su, 2012, Mienralogy and geochemistry of gold-bearing arsenian pyrite from Shuiyidong Carlin-type gold deposit, Guizhou, China: implications for gold depoistional processes, Mineral. Deposita, 47, 653, 10.1007/s00126-011-0328-9
Sung, 2009, Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia, Mineral. Deposita, 44, 765, 10.1007/s00126-009-0244-4
Tanner, 2016, Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile, Contrib. Mineral. Petrol., 171, 10.1007/s00410-016-1248-6
Tardani, 2017, Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition, Geochim. Cosmochim. Acta, 204, 179, 10.1016/j.gca.2017.01.044
Thomas, 2011, Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: insights for Ore Genesis, Econ. Geol., 106, 1, 10.2113/econgeo.106.1.1
Wedepohl, 1995, The Composition of the Continental-Crust, Geochim. Cosmochim. Acta, 59, 1217, 10.1016/0016-7037(95)00038-2
White, 1990, Epithermal environments and styles of mineralization - variations and their causes, and guidelines for exploration, J. Geochem. Explor., 36, 445, 10.1016/0375-6742(90)90063-G
Williams, 2015, Mineralogical and fluid characteristics of the fluorite-rich Monakoff and E1 Cu-Au deposits, Cloncurry region, Queensland, Australia: implications for regional F-Ba-rich IOCG mineralisation, Ore Geol. Rev., 64, 103, 10.1016/j.oregeorev.2014.05.021
Wohlgemuth-Ueberwasser, 2015, Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study, Geochim. Cosmochim. Acta, 159, 16, 10.1016/j.gca.2015.03.020
Wood, 2007, Syngenetic gold in western Victoria: occurrence, age and dimensions, Aust. J. Earth. Sci, 54, 711, 10.1080/08120090701305244
Yamamoto, 1976, Relationship between Se-S and sulfur isotope ratios of hydrothermal sulfide minerals, Mineral. Deposita, 11, 197, 10.1007/BF00204481
