Một tổng quan về các vấn đề đặt tuabin gió dạng lưới 10 × 10 và 20 × 20 được giải quyết bằng phương pháp metaheuristic

Springer Science and Business Media LLC - Tập 30 - Trang 11359-11377 - 2022
Ahmet Cevahir Cinar1
1Department of Computer Engineering, Faculty of Technology, Selçuk University, Konya, Turkey

Tóm tắt

Năng lượng gió là nguồn năng lượng tái tạo quan trọng nhất được sản xuất bởi các tuabin gió. Việc xác định vị trí tối ưu của các tuabin gió là một bài toán tối ưu hóa nhị phân đầy thách thức. Tối đa hóa công suất sản xuất và tối thiểu hóa số lượng tuabin (theo đó là tối thiểu hóa chi phí lắp đặt) là các mục tiêu chính. Các thuật toán metaheuristic có thể giải quyết các bài toán tối ưu hóa nhị phân với các giải pháp tối ưu hoặc gần tối ưu. Trong tài liệu, vấn đề đặt tuabin gió (WTPP) đã được giải quyết bằng các thuật toán metaheuristic từ năm 1994 đến năm 2020. Trong công trình này, một tổng quan tài liệu về việc giải quyết các WTPP dạng lưới 10 × 10 và 20 × 20 bằng các thuật toán metaheuristic được thực hiện. Bài viết đã thảo luận sâu về 46 tài liệu khác nhau và trình bày tất cả các kết quả thực nghiệm để làm rõ cho các nghiên cứu trong tương lai nhằm đưa ra các phương pháp metaheuristic mạnh mẽ hơn cho việc giải quyết WTPP. Các kết quả chính của tổng quan này bao gồm sự thận trọng chống lại các so sánh sai; trình bày các kết quả thực nghiệm hiện tại; xác định các tham số so sánh; và minh bạch về vấn đề benchmark. Các hướng nghiên cứu trong tương lai đã được nhấn mạnh rõ ràng cho các thực hành viên và nhà nghiên cứu, đồng thời các chủ đề nghiên cứu mới cho các nghiên cứu tiềm năng cũng được trình bày.

Từ khóa


Tài liệu tham khảo

Abdelsalam AM, El-Shorbagy MA (2018) Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renewable Energy 123:748–755 Asaah P, Hao L, Ji J (2021) Optimal placement of wind turbines in wind farm layout using particle swarm optimization. J Modern Power Syst Clean Energy 9:367–375 Azlan F, Kurnia JC, Tan BT, Ismadi M-Z (2021) Review on optimisation methods of wind farm array under three classical wind condition problems. Renew Sustain Energy Rev 135:110047 Beşkirli A, Dağ İ (2020) A new binary variant with transfer functions of Harris Hawks optimization for binary wind turbine micrositing. Energy Rep 6:668–673 Beşkirli M, Koç İ, Haklı H, Kodaz H (2018) A new optimization algorithm for solving wind turbine placement problem: binary artificial algae algorithm. Renewable Energy 121:301–308 Beşkirli M, Koc I, Kodaz H (2019) Optimal placement of wind turbines using novel binary invasive weed optimization. Tehnički Vjesnik 26:56–63 Chen K, Song MX, Zhang X (2014) Binary-real coding genetic algorithm for wind turbine positioning in wind farm. J Renew Sustain Energy 6:053115 Emami A, Noghreh P (2010) New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy 35:1559–1564 Gao X, Li Y, Zhao F, Sun H (2020) Comparisons of the accuracy of different wake models in wind farm layout optimization. Energy Explor Exploit 38:1725–1741 Grady SA, Hussaini MY, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renewable Energy 30:259–270 Hakli H (2019) A new approach for wind turbine placement problem using modified differential evolution algorithm. Turk J Electr Eng Comput Sci 27:4659–4672 Ituarte-Villarreal CM, Espiritu JF (2011) Optimization of wind turbine placement using a viral based optimization algorithm. Proc Comput Sci 6:469–474 Khan SA, Rehman S (2013) Iterative non-deterministic algorithms in on-shore wind farm design: a brief survey. Renew Sustain Energy Rev 19:370–384 Liu Z, Peng J, Hua X, Zhu Z (2021) Wind farm optimization considering non-uniformly distributed turbulence intensity. Sustain Energy Technol Assess 43:100970 Mittal P, Mitra K (2018) Determining layout of a wind farm with optimal number of turbines: a decomposition based approach. J Clean Prod 202:342–359 Mittal P, Mitra K (2020) In search of flexible and robust wind farm layouts considering wind state uncertainty. J Clean Prod 248:119195 Mittal P, Kulkarni K, Mitra K (2016) A novel hybrid optimization methodology to optimize the total number and placement of wind turbines. Renewable Energy 86:133–147 Moorthy CB, Deshmukh MK (2015) A new approach to optimise placement of wind turbines using particle swarm optimisation. Int J Sustain Energ 34:396–405 Mosetti GPCDB, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 51:105–116 Nash R, Nouri R, Vasel-Be-Hagh A (2021) Wind turbine wake control strategies: a review and concept proposal. Energy Convers Manage 245:114581 Parada L, Herrera C, Flores P, Parada V (2017) Wind farm layout optimization using a Gaussian-based wake model. Renewable Energy 107:531–541 Patel J, Savsani V, Patel V, Patel R (2017) Layout optimization of a wind farm to maximize the power output using enhanced teaching learning based optimization technique. J Clean Prod 158:81–94 Pookpunt S, Ongsakul W (2013) Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renewable Energy 55:266–276 Rahbari O, Vafaeipour M, Fazelpour F, Feidt M, Rosen MA (2014) Towards realistic designs of wind farm layouts: application of a novel placement selector approach. Energy Convers Manage 81:242–254 Rajper S, Amin IJ (2012) Optimization of wind turbine micrositing: a comparative study. Renew Sustain Energy Rev 16:5485–5492 Rao RV, Keesari HS (2018) Multi-team perturbation guiding Jaya algorithm for optimization of wind farm layout. Appl Soft Comput 71:800–815 Rehman S, Ali SS, Khan SA (2016) Wind farm layout design using cuckoo search algorithms. Appl Artif Intell 30:899–922 Rehman S, Khan SA, Alhems LM (2020) The effect of acceleration coefficients in particle swarm optimization algorithm with application to wind farm layout design. FME Transactions 48:922–930 Shakoor R, Hassan MY, Raheem A, Rasheed N (2016) Wind farm layout optimization using area dimensions and definite point selection techniques. Renewable Energy 88:154–163 Turner SDO, Romero DA, Zhang PY, Amon CH, Chan TCY (2014) A new mathematical programming approach to optimize wind farm layouts. Renewable Energy 63:674–680 Wan C, Wang J, Yang G, Huajie Gu, Zhang X (2012) Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy. Renewable Energy 48:276–286 Wang L, Tan ACC, Yuantong Gu (2015) Comparative study on optimizing the wind farm layout using different design methods and cost models. J Wind Eng Ind Aerodyn 146:1–10 Yang K, Cho K (2019) Simulated annealing algorithm for wind farm layout optimization: a benchmark study. Energies 12:4403 Yang Q, Jianxiao Hu, Law S-S (2018) Optimization of wind farm layout with modified genetic algorithm based on boolean code. J Wind Eng Ind Aerodyn 181:61–68 Yin P-Y, Wang T-Y (2012) A GRASP-VNS algorithm for optimal wind-turbine placement in wind farms. Renewable Energy 48:489–498 Zergane S, Smaili A, Masson C (2018) Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method. Renewable Energy 125:166–171 Aslan M, Gunduz M, Kiran MS (2020) ‘A Jaya-based approach to wind turbine placement problem’, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1–20 Bilbao M, Alba E (2009) Simulated annealing for optimization of wind farm annual profit. In 2009 2nd International Symposium on Logistics and Industrial Informatics, 1–5. IEEE Changshui Z, Guangdong H, Jun W (2011) ‘A fast algorithm based on the submodular property for optimization of wind turbine positioning’, Renewable energy, 36: 2951-58 Cinar AC (2021) Binary sooty tern optimization algorithms for solving wind turbine placement problem. In International Conference on Interdisciplinary Applications of Artificial Intelligence 2021 (ICIDAAI’21), 148–51. Yalova, Turkey do Couto, Tales G, Bruno Farias, ACGC Diniz, and Marcus Vinicius G de Morais (2013) “Optimization of wind farm layout using genetic algorithm.” In 10th world congress on structural and multidisciplinary optimization 1–10 Gao X, Yang H, Lin L, Koo P (2015) Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore, J Wind Eng Ind Aerodynam, 139: 89-99 García Márquez FP, Peinado Gonzalo A (2021) A comprehensive review of artificial intelligence and wind energy, Arch Comput Methods Eng: 1–24 González JS, Gonzalez Rodriguez AG, Castro Mora J, Santos JR, Payan MB (2010) Optimization of wind farm turbines layout using an evolutive algorithm, Renewable energy, 35: 1671-81 Hakli H (2020) BinEHO: a new binary variant based on elephant herding optimization algorithm, Neural Comput Appl: 1–21 Huang H-S (2007) Distributed genetic algorithm for optimization of wind farm annual profits. In 2007 International Conference on Intelligent Systems Applications to Power Systems, 1–6. IEEE Huang H-S (2009) Efficient hybrid distributed genetic algorithms for wind turbine positioning in large wind farms. In 2009 IEEE International Symposium on Industrial Electronics, 2196–201. IEEE Jelavic M, Peric N, Car S (2005) Estimation of wind turbulence model parameters. In 2005 International Conference on Control and Automation, 89–94. IEEE Jensen NO (1983) A note on wind generator interaction. Vol. 2411. Risø National Laboratory, Roskilde, Denmark Katic I, Højstrup J, Jensen NO (1986) A simple model for cluster efficiency. In European wind energy association conference and exhibition, 407–10 Kunakote T, Sabangban N, Kumar S, Tejani GG, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2021) Comparative performance of twelve metaheuristics for wind farm layout optimisation, Arch Comput Methods Eng: 1–14 Mittal A (2010) Optimization of the layout of large wind farms using a genetic algorithm, Case Western Reserve University Moreno SR, Pierezan J, dos Santos Coelho L, Mariani VC (2021) Multi-objective lightning search algorithm applied to wind farm layout optimization, Energy, 216: 119214 Niu Q, Jiang K, Liu B (2019) A Novel Binary Negatively Correlated Search for Wind Farm Layout Optimization. In 2019 IEEE Congress on Evolutionary Computation (CEC), 191–96. IEEE Patel J, Savsani V, Patel R (2015) Maximizing energy output of a wind farm using teaching–learning-based optimization. In Energy Sustainability, V002T19A04. American Society of Mechanical Engineers Patel J, Savsani V, Patel V, Patel R (2020) Exploring the effect of passing vehicle search (PVS) for the wind farm layout optimization problem. in, Reliability and Risk Assessment in Engineering (Springer) Rehman S, Syed SA Ali (2015) Wind farm layout design using modified particle swarm optimization algorithm. In IREC2015 The Sixth International Renewable Energy Congress, 1–6. IEEE Wan C, Wang J, Yang G, Li X, Zhang X (2009a) Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009a 28th Chinese Control Conference, 5092–96. IEEE Wan C, Wang J, Yang G, Zhang X (2009b) Optimal siting of wind turbines using real-coded genetic algorithms. In Proceedings of European wind energy association conference and exhibition, 1–6 Wan C, Wang J, Yang G, Zhang X (2010) Optimal micro-siting of wind farms by particle swarm optimization. In International Conference in Swarm Intelligence, 198–205. Springer