Một bài đánh giá và nghiên cứu về ảnh hưởng của quá trình ozonation nanophotocatalytic đối với việc loại bỏ hợp chất phenolic từ nước thải thực tế của ngành pulp và giấy

Springer Science and Business Media LLC - Tập 24 - Trang 4105-4116 - 2016
Hamed Biglari1, Mojtaba Afsharnia1, Vali Alipour2, Rasoul Khosravi3, Kiomars Sharafi4,5, Amir Hossein Mahvi5,6
1Department of Environmental Health Engineering, School of Public Health, Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
2Department of Environmental Health Engineering, School of Public Health, Research Center for Social Determinants in Health Promotion, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
3Department of Environmental Health Engineering, School of Public Health, Birjand University of Medical Sciences, Birjand, Iran
4Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
5Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
6Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

Phenol và các dẫn xuất của nó là những chất ô nhiễm môi trường chính thải ra từ các ngành công nghiệp giấy và bột giấy vào các nguồn nước. Tất cả các hợp chất này, đặc biệt là các hợp chất phenolic clo hóa, đều rất độc hại cho hệ động thực vật, ngay cả ở nồng độ tương đối thấp. Nghiên cứu này nhằm mục đích khảo sát tỷ lệ loại bỏ các hợp chất phenolic từ nước thải của các ngành công nghiệp bột giấy và giấy bằng cách sử dụng sự kết hợp của các quá trình ozonation và quang xúc tác. Đầu tiên, một thể tích nhất định từ nước thải của các ngành công nghiệp giấy và bột giấy chứa nồng độ phenol cụ thể đã được thu thập và đưa vào một phản ứng đã được lắp sẵn ở quy mô phòng thí nghiệm. Sau đó, hiệu ứng kết hợp và riêng lẻ của liều lượng oxit kẽm (ZnO), lưu lượng ozone (O3) và pH dưới ánh sáng tử ngoại trong 30 phút đã được đánh giá. Nồng độ của các hợp chất phenolic và lưu lượng khí ozone sinh ra được đo bằng phương pháp quang phổ và iodometric, tương ứng. Các kết quả cho thấy tỷ lệ loại bỏ phenolic tăng lên ở pH axit so với pH kiềm; nó cũng giảm khi tăng liều lượng ZnO. Hơn nữa, tỷ lệ loại bỏ hợp chất phenolic cao nhất đạt 99% ở điều kiện tối ưu (pH 5, liều lượng ZnO là 0,1 g L−1 trong 30 phút với ánh sáng UV-C 125 W). Cuối cùng, thử nghiệm độc tính trên Daphnia cho thấy nước thải đã được xử lý an toàn và đạt tiêu chuẩn để có thể được thải ra vào nguồn nước tiếp nhận.

Từ khóa

#phenolic compounds #ozonation #photocatalysis #pulp and paper industry #environmental pollution

Tài liệu tham khảo

Agustina TE, Ang H, Vareek V (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C: Photochem Rev 6:264–273 Al-Ananzeh NM (2004) Oxidation processes: experimental study and theoretical investigations (Doctoral dissertation, Purdue University) Ali M, Sreekrishnan T (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196 Alley ER (2007) Water quality control handbook. McGraw-Hill, New York, pp. 2–3 Am Water Works Res F, Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment: application and engineering. CRC press Amat A, Arques A, Miranda M, Lopez F (2005) Use of ozone and/or UV in the treatment of effluents from board paper industry. Chemosphere 60:1111–1117 Anju S, Yesodharan S, Yesodharan E (2012) Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem Eng J 189:84–93 Bazrafshan E, Biglari H, Mahvi AH (2012) Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environ Bull 21:364–371 Beltran FJ, Aguinaco A, García-Araya JF, Oropesa A (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42:3799–3808 Benhebal H, Chaib M, Salmon T, Geens J, Léonard A, Lambert SD, Crine M, Heinrichs B (2013) Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex Eng J 52:517–523 Berden G, Meerts WL, Schmitt M, Kleinermanns K (1996) High resolution UV spectroscopy of phenol and the hydrogen bonded phenol-water cluster. J Chem Phys 104:972–982 Beulker S, Jekel M (1993) Ozonation and precipitation for treatment of bleachery effluents from pulp mills. 361–370 Biglari H, Chavoshani A, Javan N, Hossein Mahvi A (2016) Geochemical study of groundwater conditions with special emphasis on fluoride concentration. Iran Desalination and Water Treatment:1–8 Byrappa K, Subramani A, Ananda S, Rai KL, Dinesh R, Yoshimura M (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29:433–438 Chaichanawong J, Yamamoto T, Ohmori T (2010) Enhancement effect of carbon adsorbent on ozonation of aqueous phenol. J Hazard Mater 175:673–679 Chun H, Yizhong W, Hongxiao T (2000) Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere 41:1205–1209 Devipriya SP, Yesodharan S (2010) Photocatalytic degradation of phenol in water using TiO2 and ZnO Dong Y, Zhao H, Wang Z, Wang G, He A, Jiang P (2012) Facile preparation of ZnO nanocatalysts for ozonation of phenol and effects of calcination temperatures. Bull Kor Chem Soc 33:215–220 Esplugas S, Gimenez J, Contreras S, Pascual E, Rodrı́guez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042 Farley R (2003) Ozone and the reef aquarium, Part 1: chemistry and biochemistry. Reefkeeping Online Magazine. June, 2006–03 Farrokhi M, Hosseini S-C, Yang J-K, Shirzad-Siboni M (2014) Application of ZnO–Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut 225:1–12 Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. section of 5–47, Direct Method Feigelson L, Muszkat L, Bir L, Muszkat K (2000) Dye photo-enhancement of TiO2-photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacil. Water Science & Technology 42:275–279 García-Araya JF, Beltrán FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804 Gaya UI, Abdullah AH, Hussein MZ, Zainal Z (2010) Photocatalytic removal of 2, 4, 6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 263:176–182 Giri R, Ozaki H, Taniguchi S, Takanami R (2008) Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber. International Journal of Environmental Science & Technology 5:17–26 Giri J, Srivastva A, Pachauri S, Srivastva P (2014) Effluents from paper and pulp industries and their impact on soil properties and chemical composition of plants in Uttarakhand India. J Environ Waste Manag 1:26–32 Goslan EH, Gurses F, Banks J, Parsons SA (2006) An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. Chemosphere 65:1113–1119 Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO 2: a review. Water Res 46:5453–5471 Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO 2 in wastewater. Chem Eng J 119:55–59 Hayat K, Gondal M, Khaled MM, Ahmed S, Shemsi AM (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A Gen 393:122–129 Hong S-S, Ju C-S, Lim C-G, Ahn B-H, Lim K-T, Lee G-D (2001) A photocatalytic degradation of phenol over TiO2 prepared by sol-gel method. J Ind Eng Chem 7:99–104 Hsu Y-C, Chen J-H, Yang H-C (2007) Calcium enhanced COD removal for the ozonation of phenol solution. Water Res 41:71–78 Hu C, Xing S, Qu J, He H (2008) Catalytic ozonation of herbicide 2, 4-D over cobalt oxide supported on mesoporous zirconia. J Phys Chem C 112:5978–5983 Huang C-R, Shu H-Y (1995) The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UVO3 and UVH2O2 processes. J Hazard Mater 41:47–64 Huang Y, Cui C, Zhang D, Li L, Pan D (2015) Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere 119:295–301 Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501 Jorgensen SE, Johnsen I (2011) Principles of environmental science and technology, 14. Elsevier Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO 2. J Environ Sci 21:527–533 Khan MH, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696 Konstantinova M, Razumovskii S, Zaikov G (1991) Mechanism of the reaction of ozone with phenols. Bulletin of the Academy of Sciences of the USSR, Division of chemical science 40:271–275 Larson TE, Buswell AM, Ludwig HF, Langelier W (1942) Calcium carbonate saturation index and alkalinity interpretations [with discussion]. Journal (American Water Works Association):1667–1684 Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448 Li L, Zhu W, Zhang P, Chen Z, Han W (2003) Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res 37(15):3646–3651 Lin S-H, Chiou C-H, Chang C-K, Juang R-S (2011) Photocatalytic degradation of phenol on different phases of TiO 2 particles in aqueous suspensions under UV irradiation. J Environ Manag 92:3098–3104 Lindholm-Lehto PC, Knuutinen JS, Ahkola HS, Herve SH (2015) Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res 22:6473–6499 Liotta L, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606 Lukes P, Locke BR (2005) Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor. Ind Eng Chem Res 44:2921–2930 Marsalek R (2014) Particle size and zeta potential of ZnO. APCBEE Procedia 9:13–17 Mehrjouei M, Müller S, Sekiguchi K, Möller D (2010) Decolorization of wastewater produced in a pyrolysis process by ozone: enhancing the performance of ozonation. Ozone Sci Eng 32:349–354 Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219 Moussavi G, Khavanin A, Alizadeh R (2009) The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters. J Hazard Mater 171:175–181 Mvula E, Schuchmann MN, von Sonntag C (2001) Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J Chem Soc Perkin Trans 2:264–268 Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50 Orge C, Pereira M, Faria J (2015) Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Appl Catal B Environ 174:113–119 Paz Y (2006) Preferential photodegradation–why and how? Comptes Rendus Chimie 9:774–787 Piera E, Calpe JC, Brillas E, Domènech X, Peral J (2000) 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO 2/UVA/O 3 and Fe (II)/UVA/O 3 systems. Appl Catal B Environ 27:169–177 Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149 Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333:37–58 Prabha I, Lathasree S (2014) Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: nanoparticle synthesis, characterization and comparative photocatalytic efficiencies. Mater Sci Semicond Process 26:603–613 Raj A, Kumar S, Haq I, Singh SK (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362 Rivas L, Bellobono IR, Ascari F (1998) Photomineralization of n-alkanoic acids in aqueous solution by photocatalytic membranes. Influence of radiation power. Chemosphere 37:1033–1044 Rodríguez EM, Márquez G, León EA, Álvarez PM, Amat AM, Beltrán FJ (2013) Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. J Environ Manag 127:114–124 Savant D, Abdul-Rahman R, Ranade D (2006) Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 97:1092–1104 Sehested K, Holcman J, Bjergbakke E, Hart EJ (1984) A pulse radiolytic study of the reaction hydroxyl + ozone in aqueous medium. J Phys Chem 88:4144–4147 Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M (2009) Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J Hazard Mater 172:353–362 Sobczyński A, Duczmal Ł (2004) Photocatalytic destruction of catechol on illuminated titania. React Kinet Catal Lett 82:213–218 Sun H, Feng X, Wang S, Ang HM, Tadé MO (2011) Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: effects of support and sulphate oxidant. Chem Eng J 170:270–277 Treguer R, Tatin R, Couvert A, Wolbert D, Tazi-Pain A (2010) Ozonation effect on natural organic matter adsorption and biodegradation–application to a membrane bioreactor containing activated carbon for drinking water production. Water Res 44:781–788 Tso C-p, C-m Z, Y-h S, Tseng Y-M, Wu S-c, R-a D (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127 Wang G-S, Hsieh S-T, Hong C-S (2000) Destruction of humic acid in water by UV light—catalyzed oxidation with hydrogen peroxide. Water Res 34:3882–3887 Weinberg BL, Drayson SR, Freese K (1996) Wavelet analysis and visualization of the formation and evolution of low total ozone events over northern Sweden. Geophys Res Lett 23:2223–2226 Wojtowicz JA (2001) Use of ozone in the treatment of swimming pools and spas. Journal of the swimming pool and spa industry 4:41–53 Wu Z, Franke M, Ondruschka B, Zhang Y, Ren Y, Braeutigam P, Wang W (2011) Enhanced effect of suction-cavitation on the ozonation of phenol. J Hazard Mater 190:375–380 Wu D, Yang Z, Wang W, Tian G, Xu S, Sims A (2012) Ozonation as an advanced oxidant in treatment of bamboo industry wastewater. Chemosphere 88:1108–1113 Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17 Yamamoto Y, Niki E, Shiokawa H, Kamiya Y (1979) Ozonation of organic compounds. 2. Ozonation of phenol in water. The Journal of Organic Chemistry 44:2137–2142 Yan M, Wang D, Shi B, Wang M, Yan Y (2007) Effect of pre-ozonation on optimized coagulation of a typical North-China source water. Chemosphere 69:1695–1702 Yousef RI, El-Eswed B, Ala’a H (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem Eng J 171:1143–1149 Zhang F, Yang J (2009) Preparation of nano-ZnO and its application to the textile on antistatic finishing. Int J Chem 1:18