A retinal dark-light switch: A review of the evidence

Visual Neuroscience - Tập 13 Số 3 - Trang 399-409 - 1996
Ian G. Morgan1, M K Boelen2
1Visual Sciences Group, Centre for Visual Science and Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
2Centre for Research on Ageing and Health, Latrobe University, Bendigo, Vic 3550, Australia

Tóm tắt

AbstractWe propose that there exists within the avian, and perhaps more generally in the vertebrate retina, a two-state nonadapting flip-flop circuit, based on reciprocal inhibitory interactions between the photoreceptors, releasing melatonin, the dopaminergic amacrine cells, and amacrine cells which contain enkephalin-, neurotensin-, and somatostatin-like immunoreactivity (the ENSL1 amacrine cells). This circuit consists of two loops, one based on the photoreceptors and dopaminergic amacrine cells, and the other on the dopaminergic and ENSLI amacrine cells. In the dark, the photoreceptors and ENSL1 amacrine cells are active, with the dopaminergic amacrine cells inactive. In the light, the dopaminergic amacrine cells are active, with the photoreceptors and ENSLI amacrine cells inactive. The transition from dark to light state occurs over a narrow (<1 log unit) range of low light intensities, and we postulate that this transition is driven by a graded, adapting pathway from photoreceptors, releasing glutamate, to ON-bipolar cells to dopaminergic amacrine cells. The properties of this pathway suggest that, once released from the reciprocal inhibitory controls of the dark state, dopamine release will show graded, adapting characteristics. Thus, we postulate that retinal function will be divided into two phases: a dopamine-independent phase at low light intensities, and a dopamine-dependent phase at higher light intensities. Dopamine-dependent functions may show two-state properties, or two-state properties on which are superimposed graded, adapting characteristics. Functions dependent upon melatonin, the enkephalins, neurotensin, and somatostatin may tend to show simpler two-state properties. We propose that the dark-light switch may have a role in a range of light-adaptive phenomena, in signalling night-day transitions to the suprachiasmatic nucleus and the pineal, and in the control of eye growth during development.

Từ khóa


Tài liệu tham khảo

10.1016/0306-4522(90)90384-G

10.1017/S0952523800001565

10.1073/pnas.76.6.3010

McCormack, 1993, Light and circadian modulation of teleost retinal tyrosine hydroxylase activity, Investigative Ophthalmology and Visual Science, 34, 1853

Tran, 1992, Differential localization of dopamine D1 and D2 receptors in rat retina, Investigative Ophthalmology and Visual Science, 33, 1620

10.1007/BF00734814

10.1017/S0952523800004673

10.1016/0197-0186(92)90167-P

10.1016/0042-6989(93)90042-U

Morgan, 1995, Pineal activity is under the control of retinal D1-dopaminergic pathways, Neuro-Report, 6, 446

10.1152/jn.1994.72.1.56

10.1097/00001756-199507310-00016

10.1016/0042-6989(81)90052-3

10.1016/0278-4327(91)90031-V

10.1111/j.1471-4159.1980.tb09943.x

10.1126/science.4035351

10.1016/0006-8993(90)90879-G

Kramer, 1971, Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of HS-dopamine in vivo, Investigative Ophthalmology and Visual Science, 10, 438

10.1017/S0952523800000183

10.1002/cne.902210402

10.1152/jn.1994.72.2.730

10.1016/0042-6989(89)90120-X

10.1126/science.6255566

10.1017/S0952523800011287

10.1111/j.1471-4159.1982.tb03971.x

10.1007/BF00216608

10.1016/0024-3205(86)90080-9

10.1016/0006-8993(93)91725-8

Megaw, 1994, Deprivation of form vision reduces, and temporal contrast restores the levels of [leu]enkephalin in chicken retina, Proceedings of the Australian Neuroscience Society, 5, 200

10.1073/pnas.77.8.4998

10.1016/0006-8993(89)90858-5

10.1038/292620a0

10.1007/BF00216497

10.1016/0306-4522(84)90272-0

10.1038/281479a0

Seltner, 1994, [Met5]enkephalin and form deprivation myopia, Investigative Ophthalmology and Visual Science, 35, 2069

10.1016/0306-4522(86)90089-8

10.1016/0006-8993(93)91018-N

10.1016/0278-4327(88)90023-5

10.1016/0006-8993(74)90938-X

10.1017/S0952523800005952

10.1017/S095252380000300X

10.1016/1350-9462(94)00001-Y

10.1016/0006-8993(83)90273-1

Sait, 1994, Excitatory amino acid-control of the ENSLl amacrine cells in chicken retina, Proceedings of the Australian Neuroscience Society, 5, 201

Hadjiconstantinou, 1984, An endogenous ligand modulates dopamine-containing neurons of retina via alpha-2 adrenoceptors, Journal of Pharmacology and Experimental Therapeutics, 229, 381

10.1523/JNEUROSCI.14-09-05661.1994

10.1007/BF00966867

10.1016/0006-8993(95)00370-6

10.1016/0006-8993(83)91099-5

10.1016/0014-2999(83)90120-6

10.1073/pnas.89.24.12093

10.1016/0006-8993(87)90098-9

10.1016/0006-8993(91)90138-L

Bock, 1990, CIBA Foundation Symposium, 155

10.1016/0014-4835(78)90166-5

Iuvone, 1978, Retinal tyrosine hydroxylase: Comparison of short-term and long-term stimulation by light, Molecular Pharmacology, 14, 1212

10.1016/0006-8993(94)91657-8

10.1016/0006-8993(94)91084-7

10.1016/0006-8993(87)90314-3

10.1007/BF00214374

10.1523/JNEUROSCI.11-10-02959.1991

10.1017/S0952523800009743

10.1016/0896-6273(93)90160-S

10.1016/0197-0186(92)90166-O

Hadjiconstantinou, 1988, Aromatic L-amino acid decarboxylase activity of the rat retina is modulated in vivo by environmental light, Journal of Neurochemistry, 51, 1560, 10.1111/j.1471-4159.1988.tb01125.x

10.1016/0006-8993(91)91721-C

10.1016/0304-3940(94)90120-1

10.1016/0304-3940(84)90323-9

10.1152/jn.1992.67.6.1633

Cohen, 1981, Neuroleptic drugs activate tyrosine hydroxylase of retinal amacrine cells, Journal of Pharmacology and Experimental Therapeutics, 218, 390

10.1017/S0952523800010683

10.1523/JNEUROSCI.08-07-02259.1988

10.1073/pnas.79.7.2398

10.1152/jn.1992.67.2.364

Chiba, 1994, APB (2-amino-4-phosphonobutyric acid) activates a chloride conductance in ganglion cells isolated from newt retina, Neuro Report, 5, 489

10.1016/0304-3940(94)90486-3

10.1016/0006-8993(87)91211-X

10.1017/S0952523800002996

Dubocovich, 1981, Modulation of the stimulation-evoked release of [3H]dopamine in the rabbit retina, Journal of Pharmacology and Experimental Therapeutics, 219, 701

10.1016/0278-4327(88)90004-1

10.1038/306782a0

10.1016/0006-8993(85)90619-5

Howells, 1980, Opiate binding sites in the retina: Properties and distribution, Journal of Pharmacology and Experimental Therapeutics, 215, 60

Su, 1987, Interaction between enkephalin and dopamine in the avian retina, Brain Research, 423, 63, 10.1016/0006-8993(87)90825-0

10.1017/S0952523800003941

10.1007/BF00501917

10.1523/JNEUROSCI.11-10-03034.1991

10.1002/cne.903310404

10.1016/0278-4327(93)90007-G

10.1016/0304-3940(92)90138-W

10.1016/0006-8993(91)91174-Y

10.1016/0304-3940(88)90449-1

10.1111/j.1471-4159.1990.tb04186.x

10.1016/0006-8993(89)90691-4

10.1016/0304-3940(93)90537-U

10.1016/0006-8993(90)90591-X

10.1038/248057a0

10.1016/0006-8993(88)91048-7

10.1016/0006-8993(79)90099-4

10.1073/pnas.90.12.5667

Zawilska, 1991, Regulation of melatonin biosynthesis in vertebrate retina: Involvement of dopamine in the suppressive effects of light, Folio Histochemica et Cytobiologica, 29, 3

10.1007/BF00711177

Ishimoto, 1982, Phylogenetical development of somatostatin-containing cells in the retina from teleosts to mammals: Immunohistochemical analysis, Journal fur Hirnforschung, 23, 127

10.1016/0306-4522(81)90152-4

10.1016/0006-8993(91)90964-W

10.1016/0006-8993(94)91935-6

10.1152/jn.1993.70.4.1681

10.1002/cne.903310202

10.1113/jphysiol.1991.sp018709

10.1017/S0952523800005009

10.1126/science.30997

Dubocovich, 1983, Enkephalins modulate [3H]dopamine release from rabbit retina in vitro, Journal of Pharmacology and Experimental Therapeutics, 224, 634

10.1007/BF00734808

10.1017/S0952523800010142

10.1111/j.1471-4159.1982.tb07997.x

10.1016/0014-2999(83)90186-3

10.1017/S0952523800012360

10.1016/0042-6989(90)90013-B

10.1016/0304-3940(90)90390-U

10.1016/0306-4522(81)90191-3

10.1002/cne.902430102

10.1007/BF01277947

10.1016/0024-3205(83)90640-9

10.1016/0304-3940(86)90483-0

10.1016/0006-8993(93)90071-T

10.1073/pnas.86.2.704

10.1523/JNEUROSCI.12-12-04911.1992

10.1038/301243a0