A restriction estimate using polynomial partitioning
Tóm tắt
If
Từ khóa
Tài liệu tham khảo
Bourgain, J., 1991, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal., 1, 147, 10.1007/BF01896376
Bourgain, Jean, 2011, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21, 1239, 10.1007/s00039-011-0140-9
Bennett, Jonathan, 2006, On the multilinear restriction and Kakeya conjectures, Acta Math., 196, 261, 10.1007/s11511-006-0006-4
Chen, Xi, 2010, Partial derivatives in arithmetic complexity and beyond, Found. Trends Theor. Comput. Sci., 6, front matter, 1--138 (2011), 10.1561/0400000043
Clarkson, Kenneth L., 1990, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5, 99, 10.1007/BF02187783
Córdoba, Antonio, 1982, Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble), 32, vii, 215--226
Dvir, Zeev, 2009, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc., 22, 1093, 10.1090/S0894-0347-08-00607-3
Guth, Larry, Degree reduction and graininess for Kakeya-type sets in ℝ³
Guth, Larry, Distinct distance estimates and low degree polynomial partitioning
Guth, Larry, On the Erdős distinct distance problem in the plane
Kaplan, Haim, 2012, Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique, Discrete Comput. Geom., 48, 499, 10.1007/s00454-012-9443-3
Matoušek, Jiří, 2003, Using the Borsuk-Ulam theorem
Milnor, J., 1964, On the Betti numbers of real varieties, Proc. Amer. Math. Soc., 15, 275, 10.2307/2034050
Sharir, Micha, 2005, The interface between computational and combinatorial geometry, 137
Solymosi, József, 2012, An incidence theorem in higher dimensions, Discrete Comput. Geom., 48, 255, 10.1007/s00454-012-9420-x
Stein, E. M., 1979, Some problems in harmonic analysis, 3
Stone, A. H., 1942, Generalized “sandwich” theorems, Duke Math. J., 9, 356, 10.1215/S0012-7094-42-00925-6
Szemerédi, Endre, 1983, Extremal problems in discrete geometry, Combinatorica, 3, 381, 10.1007/BF02579194
Tao, Terence, 1998, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc., 11, 967, 10.1090/S0894-0347-98-00278-1
Tao, Terence, 1999, The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J., 96, 363, 10.1215/S0012-7094-99-09610-2
Tao, T., 2003, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13, 1359, 10.1007/s00039-003-0449-0
Tao, Terence
Wongkew, Richard, 1993, Volumes of tubular neighbourhoods of real algebraic varieties, Pacific J. Math., 159, 177, 10.2140/pjm.1993.159.177
Wolff, Thomas, 2001, A sharp bilinear cone restriction estimate, Ann. of Math. (2), 153, 661, 10.2307/2661365
Wolff, Thomas, 1995, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana, 11, 651, 10.4171/RMI/188
Wolff, Thomas, 1999, Recent work connected with the Kakeya problem, 129
Wolff, T., 2000, Local smoothing type estimates on 𝐿^{𝑝} for large 𝑝, Geom. Funct. Anal., 10, 1237, 10.1007/PL00001652
Wolff, Thomas, 1997, A Kakeya-type problem for circles, Amer. J. Math., 119, 985, 10.1353/ajm.1997.0034
Zhang, R., Polynomials with dense zero sets and discrete models of the Kakeya conjecture and the Furstenberg set problem