A renaissance for SRC

Nature Reviews Cancer - Tập 4 Số 6 - Trang 470-480 - 2004
Timothy J. Yeatman1
1H Lee Moffitt Cancer Center and Research Institute, Tampa, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Martin, G. S. The hunting of the Src. Nature Rev. Mol. Cell Biol. 2, 467–475 (2001).

Rous, P. A. Transmission of a malignant new growth by means of a cell-free filtrate. JAMA 56, 198 (1911).

Rous, P. A. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911). References 2 and 3 are seminal papers describing the studies that first identified a transmissible agent capable of cellular transformation. This was later found to be v- Src , the first oncogene to be identified.

Rubin, H. Quantitative relations between causative virus and cell in the Rous No. 1 chicken sarcoma. Virology 6, 669–688 (1955).

Martin, G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 1021–1023 (1970).

Czernilofsky, A. P. et al. Corrections to the nucleotide sequence of the src gene of Rous sarcoma virus. Nature 301, 736–738 (1983).

Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287, 198–203 (1980).

Takeya, T. & Hanafusa, H. DNA sequence of the viral and cellular src gene of chickens. II. Comparison of the src genes of two strains of avian sarcoma virus and of the cellular homolog. J. Virol. 44, 12–18 (1982).

Takeya, T., Feldman, R. A. & Hanafusa, H. DNA sequence of the viral and cellular src gene of chickens. 1. Complete nucleotide sequence of an EcoRI fragment of recovered avian sarcoma virus which codes for gp37 and pp60src. J. Virol. 44, 1–11 (1982).

Varmus, H. E., Quintrell, N. & Wyke, J. Revertants of an ASV-transformed rat cell line have lost the complete provius or sustained mutations in src. Virology 108, 28–46 (1981).

Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

Huebner, R. J. & Todaro, G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl Acad. Sci. USA 64, 1087–1094 (1969).

Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E. & Bishop, J. M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15, 561–572 (1978).

Collett, M. S. & Erikson, R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl Acad. Sci. USA 75, 2021–2024 (1978).

Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77, 1311–1315 (1980).

Parsons, J. T. & Weber, M. J. Genetics of src: structure and functional organization of a protein tyrosine kinase. Curr. Top. Microbiol. Immunol. 147, 79–127 (1989).

Jove, R. & Hanafusa, H. Cell transformation by the viral src oncogene. Annu. Rev. Cell Biol. 3, 31–56 (1987).

Roche, S., Fumagalli, S. & Courtneidge, S. A. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569 (1995).

Jones, R. J. et al. Elevated c-Src is linked to altered cell-matrix adhesion rather than proliferation in KM12C human colorectal cancer cells. Br. J. Cancer 87, 1128–1135 (2002).

Brunton, V. G., Ozanne, B. W., Paraskeva, C. & Frame, M. C. A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in an in vitro model for the progression of colon cancer. Oncogene 14, 283–293 (1997).

Frame, M. C. Src in cancer: deregulation and consequences for cell behaviour. Biochim. Biophys. Acta 1602, 114–130 (2002).

Irby, R. B. & Yeatman, T. J. Role of Src expression and activation in human cancer. Oncogene 19, 5636–5642 (2000).

Talamonti, M. S., Roh, M. S., Curley, S. A. & Gallick, G. E. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J. Clin. Invest. 91, 53–60 (1993).

Weber, T. K., Steele, G. & Summerhayes, I. C. Differential pp60c-src activity in well and poorly differentiated human colon carcinomas and cell lines. J. Clin. Invest. 90, 815–821 (1992).

Maa, M. C., Leu, T. H., McCarley, D. J., Schatzman, R. C. & Parsons, S. J. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc. Natl Acad. Sci. USA 92, 6981–6985 (1995).

Mao, W. et al. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15, 3083–3090 (1997).

Hynes, N. E. Tyrosine kinase signalling in breast cancer. Breast Cancer Res. 2, 154–157 (2000).

Wiener, J. R. et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol. 88, 73–79 (2003).

Masaki, T. et al. pp60c-src activation in hepatocellular carcinoma of humans and LEC rats. Hepatology 27, 1257–1264 (1998).

Masaki, T. et al. Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology 29, 379–384 (1999).

Cam, W. R. et al. Reduced C-terminal Src kinase activity is correlated inversely with pp60(c-src) activity in colorectal carcinoma. Cancer 92, 61–70 (2001).

Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).

Mori, S. et al. Identification of two juxtamembrane autophosphorylation sites in the PDGFβ-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. 12, 2257–2264 (1993).

Yamaguchi, H. & Hendrickson, W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

Irby, R. B. et al. Activating SRC mutation in a subset of advanced human colon cancers. Nature Genet. 21, 187–190 (1999).

Cooper, J. A., Gould, K. L., Cartwright, C. A. & Hunter, T. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231, 1431–1434 (1986).

Zheng, X. M., Wang, Y. & Pallen, C. J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336–339 (1992).

Jung, E. J. & Kim, C. W. Interaction between chicken protein tyrosine phosphatase 1 (CPTP1)-like rat protein phosphatase 1 (PTP1) and p60(v-src) in v-src-transformed Rat-1 fibroblasts. Exp. Mol. Med. 34, 476–480 (2002).

Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–41446 (2000).

Schaller, M. D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

Burnham, M. R. et al. Regulation of c-SRC activity and function by the adapter protein CAS. Mol. Cell. Biol. 20, 5865–5878 (2000).

Thomas, J. W. et al. SH2- and SH3-mediated interactions between focal adhesion kinase and Src. J. Biol. Chem. 273, 577–583 (1998).

Tice, D. A., Biscardi, J. S., Nickles, A. L. & Parsons, S. J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 96, 1415–1420 (1999). This paper was one of the first to demonstrate synergism between c-SRC and receptor tyrosine kinases resulting in cellular transformation.

Muthuswamy, S. K., Siegel, P. M., Dankort, D. L., Webster, M. A. & Muller, W. J. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol. Cell. Biol. 14, 735–743 (1994).

DeMali, K. A., Godwin, S. L., Soltoff, S. P. & Kazlauskas, A. Multiple roles for Src in a PDGF-stimulated cell. Exp. Cell Res. 253, 271–279 (1999).

Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl Acad. Sci. USA 98, 7319–7324 (2001).

Landgren, E., Blume-Jensen, P., Courtneidge, S. A. & Claesson-Welsh, L. Fibroblast growth factor receptor-1 regulation of Src family kinases. Oncogene 10, 2027–2035 (1995).

Courtneidge, S. A. et al. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J. 12, 943–950 (1993).

Kim, M., Tezuka, T., Tanaka, K. & Yamamoto, T. Cbl-c suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Oncogene 23, 1645–1655 (2004).

Kamei, T. et al. C-Cbl protein in human cancer tissues is frequently tyrosine phosphorylated in a tumor-specific manner. Int. J. Oncol. 17, 335–339 (2000).

Akhand, A. A. et al. Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J. Biol. Chem. 274, 25821–25826 (1999).

Sugimura, M. et al. Mutation of the SRC gene in endometrial carcinoma. Jpn J. Cancer Res. 91, 395–398 (2000).

Laghi, L. et al. Lack of mutation at codon 531 of SRC in advanced colorectal cancers from Italian patients. Br. J. Cancer 84, 196–198 (2001).

Nilbert, M. & Fernebro, E. Lack of activating c-SRC mutations at codon 531 in rectal cancer. Cancer Genet. Cytogenet. 121, 94–95 (2000).

Wang, N. M., Yeh, K. T., Tsai, C. H., Chen, S. J. & Chang, J. G. No evidence of correlation between mutation at codon 531 of src and the risk of colon cancer in Chinese. Cancer Lett. 150, 201–204 (2000).

Daigo, Y. et al. Absence of genetic alteration at codon 531 of the human c-src gene in 479 advanced colorectal cancers from Japanese and Caucasian patients. Cancer Res. 59, 4222–4224 (1999).

Nigg, E. A., Sefton, B. M., Hunter, T., Walter, G. & Singer, S. J. Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic src peptide. Proc. Natl Acad. Sci. USA 79, 5322–5326 (1982).

Johnson, L. N., Noble, M. E. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

Sefton, B. M., Trowbridge, I. S., Cooper, J. A. & Scolnick, E. M. The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell 31, 465–474 (1982).

Timpson, P., Jones, G. E., Frame, M. C. & Brunton, V. G. Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Curr. Biol. 11, 1836–1846 (2001).

Courtneidge, S. A. Isolation of novel Src substrates. Biochem. Soc. Trans. 31, 25–28 (2003).

Staley, C. A., Parikh, N. U. & Gallick, G. E. Decreased tumorigenicity of a human colon adenocarcinoma cell line by an antisense expression vector specific for c-Src. Cell Growth Differ. 8, 269–274 (1997).

Ramdas, L. et al. A tyrphostin-derived inhibitor of protein tyrosine kinases: isolation and characterization. Arch. Biochem. Biophys. 323, 237–242 (1995).

Iravani, S. et al. Elevated c-Src protein expression is an early event in colonic neoplasia. Lab. Invest. 78, 365–371 (1998).

Termuhlen, P. M., Curley, S. A., Talamonti, M. S., Saboorian, M. H. & Gallick, G. E. Site-specific differences in pp60c-src activity in human colorectal metastases. J. Surg. Res. 54, 293–298 (1993).

Summy, J. M. & Gallick, G. E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22, 337–358 (2003). This review discusses the role of c- SRC in promoting the spread of cancer.

Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

Carragher, N. O., Westhoff, M. A., Fincham, V. J., Schaller, M. D. & Frame, M. C. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol. 13, 1442–1450 (2003).

Carragher, N. O. & Frame, M. C. Calpain: a role in cell transformation and migration. Int. J. Biochem. Cell Biol. 34, 1539–1543 (2002).

Sastry, S. K. & Burridge, K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36 (2000).

Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).

Fujisawa, K. et al. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273, 18943–18949 (1998).

Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

Yap, A. S., Brieher, W. M. & Gumbiner, B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).

Chen, Y. T., Stewart, D. B. & Nelson, W. J. Coupling assembly of the E-cadherin/β-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144, 687–699 (1999).

Aberle, H. et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107 (Pt 12), 3655–3663 (1994).

Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100, 209–219 (2000).

Reynolds, A. B. et al. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell. Biol. 14, 8333–8342 (1994).

Chang, J. H., Gill, S., Settleman, J. & Parsons, S. J. c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J. Cell Biol. 130, 355–368 (1995).

Fincham, V. J. & Frame, M. C. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81–92 (1998).

Avizienyte, E. et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biol. 4, 632–638 (2002).

Zou, J. X., Liu, Y., Pasquale, E. B. & Ruoslahti, E. Activated SRC oncogene phosphorylates R-ras and suppresses integrin activity. J. Biol. Chem. 277, 1824–1827 (2002).

Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

Frixen, U. H. et al. E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173–185 (1991).

Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

Noritake, H., Miyamori, H., Goto, C., Seiki, M. & Sato, H. Overexpression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in metastatic MDCK cells transformed by v-src. Clin. Exp. Metastasis 17, 105–110 (1999).

Hsia, D. A. et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 160, 753–767 (2003).

Schaller, M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta. 1540, 1–21 (2001).

Hauck, C. R., Hsia, D. A. & Schlaepfer, D. D. The focal adhesion kinase: a regulator of cell migration and invasion. IUBMB Life 53, 115–119 (2002).

Owens, L. V. et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 55, 2752–2755 (1995).

Kornberg, L. J. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 20, 745–752 (1998).

Moissoglu, K. & Gelman, I. H. v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J. Biol. Chem. 278, 47946–47959 (2003).

Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

Webb, D. J. et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

Schaller, M. D. & Parsons, J. T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell. Biol. 15, 2635–2645 (1995).

Irby, R. et al. Overexpression of normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth but not metastatic potential. Cell Growth Differ. 8, 1287–1295 (1997).

Boyer, B., Bourgeois, Y. & Poupon, M. F. Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene 21, 2347–2356 (2002).

Nakagawa, T. et al. Overexpression of the csk gene suppresses tumor metastasis in vivo. Int. J. Cancer. 88, 384–391 (2000).

Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995). Describes the identification of STAT3 as a downstream signal-transduction target of SRC.

Niu, G. et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000–2008 (2002).

Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

Kilarski, W. W., Jura, N. & Gerwins, P. Inactivation of Src family kinases inhibits angiogenesis in vivo: implications for a mechanism involving organization of the actin cytoskeleton. Exp. Cell Res. 291, 70–82 (2003).

Laird, A. D. et al. Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and-independent growth of human tumor cells. Mol. Cancer Ther. 2, 461–469 (2003).

Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20, 9018–9027 (2000).

Golas, J. M. et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 63, 375–381 (2003).

Shakespeare, W. C. et al. Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr. Opin. Drug Discov. Devel. 6, 729–741 (2003).

Golubovskaya, V. M. et al. Simultaneous inhibition of focal adhesion kinase and SRC enhances detachment and apoptosis in colon cancer cell lines. Mol. Cancer Res. 1, 755–764 (2003).

Malek, R. L. et al. Identification of Src transformation fingerprint in human colon cancer. Oncogene 21, 7256–7265 (2002).