A remark on zeta functions of finite graphs via quantum walks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003).
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proc. 33rd Annual ACM Symp. Theory of Computing, pp. 37–49 (2001).
Chandrashekar, C.M., Banerjee, S., Srikanthm, R.: Relationship between quantum walk and relativistic quantum mechanics. Phys. Rev. A. 81, 062340 (2010).
Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New York (1979).
Cvetković, D., Rowlinson, P., Simić, S.K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423, 155–171 (2007).
Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariant. Electr. J. Combin. 13, R34 (2006).
Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42, 1988–2002 (2009).
Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.N.: Two particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A. 81, 52313 (2010).
Gantmacher, F.R.: Theory of Matrices, 2 vol. Chelsea Publishing Co, Chelsea (1959).
Godsil, C., Guo, K.: Quantum walks on regular graphs and eigenvalues. Electron. J. Combin. 18, P165 (2011).
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996).
Grover, L.K.: From Schrödinger’s equation to quantum search algorithm. Am. J. Phys. 69, 769–777 (2001).
Hashimoto, K.: Zeta functions of finite graphs and representations of p-Adic groups. Adv. Stud. Pure Math. 15, 211–280 (1989).
Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: A note on the discrete-time evolutions of quantum walk on a graph. J. Math-for-Ind. 5B, 103–109 (2013).
Ihara, Y.: On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan. 18, 219–235 (1966).
Karski, M., Föster, L., Choi, J-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science. 325, 174 (2009).
Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Japan. 57, 1179–1195 (2005).
Konno, N., Sato, I.: On the relation between quantum walks and zeta functions. Quantum Inf. Process. 11, 341–349 (2012).
Kotani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. U. Tokyo. 7, 7–25 (2000).
Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. 39th ACM Symposium on Theory of Computing, pp. 575–584 (2007).
Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks, Quantum Science and Technology. Springer, Berlin Heidelberg (2014).
Matsuoka, L., Yokoyama, K.: Physical implementation of quantum cellular automaton in a diatomic molecule. Special issue: “Theoretical and mathematical aspects of the discrete time quantum walk”. J. Comput. Theor. Nanosci. 10, 1617–1620 (2013).
Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).
Northshield, S.: A note on the zeta function of a graph. J. Combin. Theory Ser. B. 74, 408–410 (1998).
Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Inf. Proc. 10, 405–417 (2011).
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Anderson, E., Jex, I., Silberhorn, Ch.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010).
Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. Special issue: “Theoretical and mathematical aspects of the discrete time quantum walk”. J. Comput. Theor. Nanosci. 10, 1583–1590 (2013).
Shiau, S-Y., Joynt, R., Coppersmith, S.N.: Physically-motivated dynamical algorithms for the graph isomorphism problem. Quantum Inform. Comput. 5, 492–506 (2005).
Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A. 74, 030301 (2006).
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004).
Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012).