A remark on the number of edge colorings of graphs
Tài liệu tham khảo
Alekseev, 1992, Range of values of entropy of hereditary classes of graphs, Diskret. Mat., 4, 148
1993, Discrete Math. Appl., 3, 191, 10.1515/dma.1993.3.2.191
Alon, 2004, The number of edge colorings with no monochromatic cliques, J. London Math. Soc., 70, 273, 10.1112/S0024610704005563
N. Alon, R. Yuster, The number of orientations having no fixed tournament, Combinatorica (in press)
Balogh, 2004, The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B, 70, 273
Bollobás, 2004, Multicoloured extremal problems, J. Combin. Theory Ser. A, 107, 295, 10.1016/j.jcta.2004.05.003
Bollobás, 1997, Hereditary and monotone properties of graphs, vol. 14, 70
Chung, 1986, Some intersection theorems for ordered sets and graphs, J. Combin. Theory Ser. A, 43, 23, 10.1016/0097-3165(86)90019-1
Erdős, 1976, Asymptotic enumeration of Kn-free graphs, vol. II, 19
Keevash, 2004, Multicolour Turán problems, Adv. in Appl. Math., 33, 238, 10.1016/j.aam.2003.08.005
J. Komlós, M. Simonovits, Szemerédi regularity lemma and its application in graph theory, in: Paul Erdős is 80, Proc. Coll. Bolyai Math. Soc., vol. 2, Keszthely, 1993, pp. 295–352
Prömel, 1992, Excluding induced subgraphs. III. A general asymptotic, Random Structures Algorithms, 3, 19, 10.1002/rsa.3240030104
Simonovits, 1968, A method for solving extremal problems in graph theory, stability problems, 279