A remark on the number of edge colorings of graphs

European Journal of Combinatorics - Tập 27 - Trang 565-573 - 2006
József Balogh1
1The Ohio State University, Mathematics Department, 231 West 18th Avenue, Columbus, OH 43210, USA

Tài liệu tham khảo

Alekseev, 1992, Range of values of entropy of hereditary classes of graphs, Diskret. Mat., 4, 148 1993, Discrete Math. Appl., 3, 191, 10.1515/dma.1993.3.2.191 Alon, 2004, The number of edge colorings with no monochromatic cliques, J. London Math. Soc., 70, 273, 10.1112/S0024610704005563 N. Alon, R. Yuster, The number of orientations having no fixed tournament, Combinatorica (in press) Balogh, 2004, The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B, 70, 273 Bollobás, 2004, Multicoloured extremal problems, J. Combin. Theory Ser. A, 107, 295, 10.1016/j.jcta.2004.05.003 Bollobás, 1997, Hereditary and monotone properties of graphs, vol. 14, 70 Chung, 1986, Some intersection theorems for ordered sets and graphs, J. Combin. Theory Ser. A, 43, 23, 10.1016/0097-3165(86)90019-1 Erdős, 1976, Asymptotic enumeration of Kn-free graphs, vol. II, 19 Keevash, 2004, Multicolour Turán problems, Adv. in Appl. Math., 33, 238, 10.1016/j.aam.2003.08.005 J. Komlós, M. Simonovits, Szemerédi regularity lemma and its application in graph theory, in: Paul Erdős is 80, Proc. Coll. Bolyai Math. Soc., vol. 2, Keszthely, 1993, pp. 295–352 Prömel, 1992, Excluding induced subgraphs. III. A general asymptotic, Random Structures Algorithms, 3, 19, 10.1002/rsa.3240030104 Simonovits, 1968, A method for solving extremal problems in graph theory, stability problems, 279