A relationship between structural and electronic order–disorder effects and optical properties in crystalline TiO2nanomaterials

Dalton Transactions - Tập 44 Số 7 - Trang 3159-3175
E. Silva1,2,3,4,5, Felipe A. La Porta1,2,3,4,5, Máximo Siu Li6,1,7,8, Juán Andrés9,10,11,12, J.A. Varela1,2,3,4,5, Élson Longo1,2,3,4,5
1Brazil
2CEP 14801-907 Araraquara
3Instituto de Química
4LIEC
5Universidade Estadual Paulista
613560-970 São Carlos
7Instituto de Física de São Carlos
8Universidade de São Paulo
9Castelló de la Plana
10Department of Physical and Analytical Chemistry
11Spain
12UNIVERSITAT JAUME I

Tóm tắt

The focus of this paper is on the analysis of the structural and electronic order–disorder effects at long, medium and short ranges of titanium dioxide (TiO2) nanoparticles synthesized by the sol–gel process followed by the microwave-assisted solvothermal (MAS) method.

Từ khóa


Tài liệu tham khảo

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Tryk, 2000, Electrochim. Acta, 45, 2363, 10.1016/S0013-4686(00)00337-6

Arun, 2014, Dalton Trans., 43, 4830, 10.1039/c3dt52780h

Bourikas, 2014, Chem. Rev., 114, 9754, 10.1021/cr300230q

Pettibone, 2008, Langmuir, 24, 6659, 10.1021/la7039916

Jagadale, 2008, J. Phys. Chem. C, 112, 14595, 10.1021/jp803567f

Li, 2005, J. Am. Chem. Soc., 127, 8659, 10.1021/ja050517g

Li, 2013, J. Phys. Chem. C, 117, 8516, 10.1021/jp4004196

Zhang, 2000, J. Phys. Chem. B, 104, 3481, 10.1021/jp000499j

Lazzeri, 2001, Phys. Rev. B: Condens. Matter, 63, 155409, 10.1103/PhysRevB.63.155409

Barnard, 2005, Nano Lett., 5, 1291, 10.1021/nl050355m

Barnard, 2005, J. Chem. Theory Comput., 1, 107, 10.1021/ct0499635

De Angelis, 2014, Chem. Rev., 114, 9708, 10.1021/cr500055q

Howard, 1991, Acta Crystallogr., Sect. B: Struct. Sci., 47, 462, 10.1107/S010876819100335X

Chen, 2007, Chem. Rev., 107, 2891, 10.1021/cr0500535

Banfield, 1992, Am. Mineral., 77, 545

Mattesini, 2004, Phys. Rev. B: Condens. Matter, 70, 212101, 10.1103/PhysRevB.70.212101

Petkov, 1998, J. Non-Cryst. Solids, 231, 17, 10.1016/S0022-3093(98)00418-9

Reyes-Coronado, 2008, Nanotechnology, 19, 145605, 10.1088/0957-4484/19/14/145605

Galynska, 2013, Int. J. Quantum Chem., 113, 2611, 10.1002/qua.24522

Landmann, 2012, Phys. Rev. B: Condens. Matter, 86, 064201, 10.1103/PhysRevB.86.064201

Macwan, 2011, J. Mater. Sci., 46, 3669, 10.1007/s10853-011-5378-y

Peng, 2008, J. Phys. Chem. Solids, 69, 1657, 10.1016/j.jpcs.2007.12.003

Livage, 1992, J. Non-Cryst. Solids, 145, 11, 10.1016/S0022-3093(05)80422-3

Glasnov, 2011, Chem. – Eur. J., 17, 11956, 10.1002/chem.201102065

Zhang, 2013, Dalton Trans., 42, 5439, 10.1039/c3dt00121k

Bilecka, 2009, ACS Nano, 3, 467, 10.1021/nn800842b

Kitchen, 2014, Chem. Rev., 114, 1170, 10.1021/cr4002353

Mingos, 1991, Chem. Soc. Rev., 20, 1, 10.1039/cs9912000001

Atkins, 2011, J. Am. Chem. Soc., 133, 20664, 10.1021/ja207344u

Bilecka, 2010, Nanoscale, 2, 1358, 10.1039/b9nr00377k

Manseki, 2013, Dalton Trans., 42, 3295, 10.1039/c2dt32663a

Pan, 2013, J. Mater. Chem. A, 1, 8299, 10.1039/c3ta10981j

Baghbanzadeh, 2011, Angew. Chem., Int. Ed., 50, 11312, 10.1002/anie.201101274

Dallinger, 2007, Chem. Rev., 107, 2563, 10.1021/cr0509410

Luo, 2008, Cryst. Growth Des., 8, 2275, 10.1021/cg700967y

Rietveld, 1969, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558

Finger, 1994, J. Appl. Crystallogr., 27, 892, 10.1107/S0021889894004218

Schossberger, 1942, Z. Kristallogr., 104, 358, 10.1524/zkri.1942.104.1.358

Weyl, 1959, Z. Kristallogr., 111, 401, 10.1524/zkri.1959.111.1-6.401

Kubelka, 1931, Zeit. Für. Tech. Phys., 12, 593

Shirley, 1972, Phys. Rev. B: Solid State, 5, 4709, 10.1103/PhysRevB.5.4709

Sharma, 2012, Recent Res. Sci. Tech., 4, 77

Hall, 1991, Acta Crystallogr., Sect. A: Found. Crystallogr., 47, 655, 10.1107/S010876739101067X

Thompson, 1987, J. Appl. Crystallogr., 20, 79, 10.1107/S0021889887087090

Bish, 1993, Am. Mineral., 78, 932

Ferrari, 1994, J. Appl. Phys., 76, 7246, 10.1063/1.358006

Jansen, 1994, J. Appl. Crystallogr., 27, 492, 10.1107/S0021889893012348

G. Will , Powder diffraction: The Rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 44–69

Lutterotti, 2007, Z. Kristallogr., Suppl., 26, 125, 10.1524/zksu.2007.2007.suppl_26.125

Wenk, 2010, Powder Diffr., 25, 283, 10.1154/1.3479004

Hu, 2003, J. Eur. Ceram. Soc., 23, 691, 10.1016/S0955-2219(02)00194-2

Tengvall, 1993, J. Colloid Interface Sci., 160, 10, 10.1006/jcis.1993.1362

Sahoo, 2009, J. Phys. Chem. C, 113, 16927, 10.1021/jp9046193

Lei, 2001, Chem. Phys. Lett., 338, 231, 10.1016/S0009-2614(01)00263-9

Hu, 2009, Cryst. Growth Des., 9, 3676, 10.1021/cg9004032

Golubović, 2008, J. Sol-Gel Sci. Technol., 49, 311, 10.1007/s10971-008-1872-3

Sćepanović, 2012, J. Raman Spectrosc., 41, 914, 10.1002/jrs.2546

Swamy, 2005, Phys. Rev. B: Condens. Matter, 71, 184302, 10.1103/PhysRevB.71.184302

Zhang, 1998, J. Mater. Chem., 8, 2073, 10.1039/a802619j

Muscat, 2002, Phys. Rev. B: Condens. Matter, 65, 224112, 10.1103/PhysRevB.65.224112

Han, 2012, Chem. Commun., 48, 1860, 10.1039/C1CC16050H

Xie, 2010, Nanotechnology, 21, 015303, 10.1088/0957-4484/21/1/015703

J. I. Goldstein , D. E.Newbury, P.Echlin, D. C.Joy, A. C.Romig, C. E.Lyman, C.Fiori and E.Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis, Plenum Press, New York, 1992

Bark, 2006, J. Chem. Phys. B, 110, 21560, 10.1021/jp063700k

Nowotny, 2006, J. Chem. Phys. B, 110, 16302, 10.1021/jp060624c

J. Nowotny , Oxide semiconductors for solar energy conversion: titanium dioxide, Taylor & Francis Gourp, Boca Raton, 2012, pp. 145–147

Moser, 1965, J. Am. Ceram. Soc., 48, 384, 10.1111/j.1151-2916.1965.tb14769.x

Lee, 1967, Proc. Br. Ceram. Soc., 8, 231

Golic, 2012, J. Sol-Gel Sci. Technol., 63, 116125

Song, 2010, Adv. Mater., 22, 1301, 10.1002/adma.200901365

Zhou, 2012, J. Phys. Chem. Lett., 3, 620, 10.1021/jz2015742

Pottier, 2001, J. Mater. Chem., 11, 1116, 10.1039/b100435m

Yang, 2014, CrystEngComm, 16, 441, 10.1039/C3CE41750F

Ranade, 2002, Proc. Natl. Acad. Sci. U. S. A., 99, 6476, 10.1073/pnas.251534898

Kalathil, 2013, Nanoscale, 5, 6323, 10.1039/c3nr01280h

Moura, 2014, J. Solid State Chem., 210, 171, 10.1016/j.jssc.2013.11.023

Paxton, 1998, Phys. Rev. B: Condens. Matter, 57, 13233, 10.1103/PhysRevB.57.1579

Wunderlich, 2004, Int. J. Nanosci., 3, 439, 10.1142/S0219581X04002231

Longo, 2004, Phys. Rev. B: Condens. Matter, 69, 125115, 10.1103/PhysRevB.69.125115

Brus, 1986, J. Phys. Chem., 90, 2555, 10.1021/j100403a003

Feng, 2001, Acc. Chem. Res., 34, 239, 10.1021/ar0000105

Bae, 2014, J. Phys. Chem. C, 118, 9726, 10.1021/jp4125588

Pirug, 1991, Surf. Sci., 241, 289, 10.1016/0039-6028(91)90089-B

Erdem, 2001, Langmuir, 17, 2664, 10.1021/la0015213

Murata, 1975, J. Electron Spectrosc. Relat. Phenom., 6, 459, 10.1016/0368-2048(75)80032-6

Gao, 2008, J. Lumin., 128, 559, 10.1016/j.jlumin.2007.07.020

C. D. Wagner , W. M.Riggs, L. E.Davis, J. F.Moulder and G. E.Muilenberg, Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in x-rayphotoelectron spectroscopy, Perkin-Elmer MN, Eden-Prairie, 1979

Xiao, 2010, Mater. Chem. Phys., 124, 1210, 10.1016/j.matchemphys.2010.08.060

Xiong, 2012, J. Nanomater., 831524

P. Villards and C. D.Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society of Metals, Metals Park, OH, 1985

Carley, 1987, J. Chem. Soc., Faraday Trans. 1, 83, 351, 10.1039/f19878300351

Zhang, 2003, Chem. Phys. Lett., 373, 333, 10.1016/S0009-2614(03)00618-3

Hashimoto, 2002, Surf. Interface Anal., 34, 262, 10.1002/sia.1296

Regonini, 2010, Surf. Interface Anal., 42, 139, 10.1002/sia.3183

J. F. Moulder , W. F.Stickle, P. E.Sobol and K. D.Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, Minnesota, 1992

Iwabuchi, 2004, J. Phys. Chem. B, 108, 10863, 10.1021/jp049200d

Wang, 1999, J. Phys. Chem. B, 103, 2188, 10.1021/jp983386x

Knauth, 1999, J. Appl. Phys., 85, 897, 10.1063/1.369208

Redmond, 1993, J. Phys. Chem., 97, 6951, 10.1021/j100129a005

Lu, 1994, J. Phys. Chem., 98, 11733, 10.1021/j100096a017

Cao, 2013, J. Alloys Compd., 554, 12, 10.1016/j.jallcom.2012.11.149

Albuquerque, 2014, J. Phys. Chem. C, 118, 9677, 10.1021/jp501757f

Albuquerque, 2013, J. Phys. Chem. C, 117, 7050, 10.1021/jp311572y

Di Valentin, 2011, J. Phys. Chem. Lett., 2, 2223, 10.1021/jz2009874

Longo, 2004, Phys. Rev. B: Condens. Matter, 69, 125115, 10.1103/PhysRevB.69.125115

Sczancoski, 2009, J. Colloid Interface Sci., 330, 227, 10.1016/j.jcis.2008.10.034

Longo, 2011, J. Phys. Chem. C, 115, 5207, 10.1021/jp1082328

Marzin, 1994, Phys. Rev. Lett., 73, 716, 10.1103/PhysRevLett.73.716

Greenham, 1996, Phys. Rev. B: Condens. Matter, 54, 17628, 10.1103/PhysRevB.54.17628

Billinge, 2007, Science, 316, 561, 10.1126/science.1135080

Lei, 2001, Appl. Phys. Lett., 78, 1125, 10.1063/1.1350959

Yu, 2002, Chem. Mater., 14, 3808, 10.1021/cm020027c

Wang, 2007, J. Lumin., 122, 889, 10.1016/j.jlumin.2006.01.318

Serpone, 1995, J. Phys. Chem., 99, 16646, 10.1021/j100045a026

http://www.systat.com/products/PeakFit/

Saraf, 1998, Int. J. Mod. Phys. B, 12, 2635, 10.1142/S0217979298001538

Forss, 1993, Appl. Phys. B, 56, 363, 10.1007/BF00324533

Longo, 2008, J. Phys. Chem. A, 112, 8920, 10.1021/jp801587w

Cavalcante, 2009, Mater. Chem. Phys., 117, 192, 10.1016/j.matchemphys.2009.05.042

Momma, 2011, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970

Cavalcante, 2008, J. Alloys Compd., 464, 340, 10.1016/j.jallcom.2007.09.121

Toyozawa, 1976, J. Lumin., 12

Weyl, 1950, Ind. Eng. Chem., 42, 257, 10.1021/ie50482a019

da Silva, 2013, Phys. Chem. Chem. Phys., 15, 12386, 10.1039/c3cp50643f

Kumar, 2014, Nanotechnology, 25, 135701, 10.1088/0957-4484/25/13/135701