Một mô hình tinh chỉnh cho cân bằng năng lượng toàn cầu của Trái Đất

Springer Science and Business Media LLC - Tập 53 - Trang 4781-4797 - 2019
Paulo Ceppi1, Jonathan M. Gregory2,3
1Grantham Institute, Imperial College London, London, UK
2National Centre for Atmospheric Science, University of Reading, Reading, UK
3Met Office Hadley Centre, Exeter, UK

Tóm tắt

Một mô hình phổ biến về cân bằng bức xạ toàn cầu giả định rằng phản ứng bức xạ với lực tác động, R, tỷ lệ thuận với nhiệt độ không khí bề mặt toàn cầu T, $$R=\lambda T$$. Các nghiên cứu trước đây đã chỉ ra hai vấn đề chưa được giải quyết với mô hình này: đầu tiên, tham số phản hồi $$\lambda$$ phụ thuộc vào tác nhân lực; thứ hai, $$\lambda$$ thay đổi theo thời gian. Trong nghiên cứu này, chúng tôi điều tra các yếu tố điều khiển R trong hai mô hình khí quyển - đại dương bề mặt chịu tác động của một loạt lực tác động khí hậu đột ngột. Kết quả cho thấy R không chỉ tỷ lệ với T, mà còn với độ ổn định quy mô lớn của tầng đối lưu S (được định nghĩa ở đây là sức mạnh nghịch nhiệt dự kiến trung bình trên các khu vực đại dương phía nam 50 $$^\circ {}$$). S dương thúc đẩy R âm, chủ yếu thông qua sự thay đổi của mây sóng ngắn và tỷ lệ giảm nhiệt độ. Một mô hình tinh chỉnh về cân bằng năng lượng toàn cầu được đề xuất, tính đến cả hiệu ứng nhiệt độ và độ ổn định. Mô hình tinh chỉnh này giải thích một cách định lượng (1) sự phụ thuộc của các phản hồi khí hậu vào tác nhân lực (hay tương đương, những khác biệt về hiệu quả lực), và (2) sự tiến triển theo thời gian của các phản hồi trong các thí nghiệm mô hình khí hậu liên kết. Hơn nữa, một mối quan hệ tương tự giữa R và S được phát hiện trong các quan sát so với mô hình, cung cấp sự tự tin rằng mô hình cân bằng năng lượng tinh chỉnh có thể áp dụng cho thế giới thực.

Từ khóa

#Phản hồi khí hậu #mô hình khí hậu #cân bằng năng lượng toàn cầu #độ ổn định tầng đối lưu #lực tác động khí hậu.

Tài liệu tham khảo

Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in ghost forcing experiments without sea ice feedbacks. Clim Dyn 24(7–8):655–666. https://doi.org/10.1007/s00382-005-0018-3 Andrews T, Webb MJ (2018) The dependence of global cloud and lapse-rate feedbacks on the spatial structure of tropical Pacific warming. J Clim 31(2):641–654. https://doi.org/10.1175/JCLI-D-17-0087.1 Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39(9):L09. https://doi.org/10.1029/2012GL051607 Andrews T, Gregory JM, Webb MJ (2015) The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J Clim 28(4):1630–1648. https://doi.org/10.1175/JCLI-D-14-00545.1 Andrews T, Gregory JM, Paynter D, Silvers LG, Zhou C, Mauritsen T, Webb MJ, Armour KC, Forster PM, Titchner H (2018) Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys Res Lett 45(16):8490–8499. https://doi.org/10.1029/2018GL078887 Armour KC, Bitz CM, Roe GH (2013) Time-varying climate sensitivity from regional feedbacks. J Clim 26(13):4518–4534. https://doi.org/10.1175/JCLI-D-12-00544.1 Bony S, Dufresne JL (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32(20):L20. https://doi.org/10.1029/2005GL023851 Brient F, Schneider T, Tan Z, Bony S, Qu X, Hall A (2016) Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Clim Dyn 47(1–2):433–449. https://doi.org/10.1007/s00382-015-2846-0 Ceppi P, Gregory JM (2017) Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc Natl Acad Sci USA 114(50):13,126–13,131. https://doi.org/10.1073/pnas.1714308114 Ceppi P, Shepherd TG (2017) Contributions of climate feedbacks to changes in atmospheric circulation. J Clim JCLI–D–17–0189.1, https://doi.org/10.1175/JCLI-D-17-0189.1 Cusack S, Slingo A, Edwards JM, Wild M (1998) The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Quart J R Meteorol Soc 124(551):2517–2526. https://doi.org/10.1002/qj.49712455117 Dessler AE, Forster PM (2018) An estimate of equilibrium climate sensitivity from interannual variability. J Geophys Res: Atmos 123(16):8634–8645. https://doi.org/10.1029/2018JD028481 Dessler AE, Mauritsen T, Stevens B (2018) The influence of internal variability on Earth’s energy balance framework and implications for estimating climate sensitivity. Atmospheric Chemistry and Physics 18(7):5147–5155. https://doi.org/10.5194/acp-18-5147-2018, https://www.atmos-chem-phys.net/18/5147/2018/ Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon, S, D Qin, M Manning, Z Chen, M Marquis, KB Averyt M, Miller H (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chap 2, pp 129–234 Forster PMdF, Gregory JM (2006) The climate sensitivity and its components diagnosed from earth radiation budget data. J Clim 19(1):39–52. https://doi.org/10.1175/JCLI3611.1 Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21(1):58–71. https://doi.org/10.1175/2007JCLI1834.1 Gregory JM, Andrews T (2016) Variation in climate sensitivity and feedback parameters during the historical period. Geophys Res Lett 43(8):3911–3920. https://doi.org/10.1002/2016GL068406 Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15(22):3117–3121. https://doi.org/10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2 Gregory JM, Andrews T, Good P, Mauritsen T, Forster PM (2016) Small global-mean cooling due to volcanic radiative forcing. Clim Dyn 47(12):3979–3991. https://doi.org/10.1007/s00382-016-3055-1 Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res: Atmos 102(D6):6831–6864. https://doi.org/10.1029/96JD03436 Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110(D18):D18,104. https://doi.org/10.1029/2005JD005776 Hersbach H, Dee DP (2016) ERA5 reanalysis is in production. ECMWF Newslett 147(7):5–6 Joshi M, Shine K, Ponater M, Stuber N, Sausen R, Li L (2003) A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change. Clim Dyn 20(7–8):843–854. https://doi.org/10.1007/s00382-003-0305-9 Klein SA, Hartmann DL (1993) The Seasonal Cycle of Low Stratiform Clouds. Journal of Climate 6(8):1587–1606. https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1993) 006%3C1587:TSCOLS%3E2.0.CO;2 Klein SA, Hall A, Norris JR, Pincus R (2017) Low-cloud feedbacks from cloud-controlling factors: a review. Surveys Geophys 38(6):1–23. https://doi.org/10.1007/s10712-017-9433-3 Knutti R, Rugenstein MAA, Hegerl GC (2017) Beyond equilibrium climate sensitivity. Nature Geoscience 10(10):727–736. https://doi.org/10.1038/ngeo3017, http://www.nature.com/doifinder/10.1038/ngeo3017 Kummer JR, Dessler AE (2014) The impact of forcing efficacy on the equilibrium climate sensitivity. Geophys Res Lett 41(10):3565–3568. https://doi.org/10.1002/2014GL060046 Lewis N, Curry J (2018) The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. J Clim 31(15):6051–6071. https://doi.org/10.1175/JCLI-D-17-0667.1 Lewis N, Curry JA (2015) The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim Dyn 45(3–4):1009–1023. https://doi.org/10.1007/s00382-014-2342-y Liu F, Lu J, Garuba OA, Huang Y, Leung LR, Harrop BE, Luo Y, Liu F (2018) Sensitivity of surface temperature to oceanic forcing via q-flux green’s function experiments. Part II: feedback decomposition and polar amplification. J Clim 31(17):6745–6761. https://doi.org/10.1175/JCLI-D-18-0042.1 Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang L, Mitrescu C, Rose FG, Kato S (2018) Clouds and the earth’s radiant energy system (CERES) Energy balanced and filled (EBAF) Top-of-atmosphere (TOA) edition-4.0 data product. J Clim 31(2):895–918. https://doi.org/10.1175/JCLI-D-17-0208.1 Marvel K, Schmidt GA, Miller RL, Nazarenko LS (2016) Implications for climate sensitivity from the response to individual forcings. Nature Climate Change 6(4):386–389. https://doi.org/10.1038/nclimate2888, http://www.nature.com/articles/nclimate2888 Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the ‘global warming hiatus’. Nature 545(7652):41–47. https://doi.org/10.1038/nature22315 Modak A, Bala G, Cao L, Caldeira K (2016) Why must a solar forcing be larger than a CO<sub>2</sub> forcing to cause the same global mean surface temperature change? Environmental Research Letters 11(4):044,013, https://doi.org/10.1088/1748-9326/11/4/044013, http://stacks.iop.org/1748-9326/11/i=4/a=044013?key=crossref.943a9361d22b6838f2d46dae76b64290 Murphy JM (1995) Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part I: Control Climate and Flux Adjustment. Journal of Climate 8(1):36–56, https://doi.org/10.1175/1520-0442(1995)008<0036:TROTHC>2.0.CO;2, http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%281995%29008%3C0036%3ATROTHC%3E2.0.CO%3B2 Myers TA, Norris JR (2016) Reducing the uncertainty in subtropical cloud feedback. Geophys Res Lett 43(5):2144–2148. https://doi.org/10.1002/2015GL067416 Neale RB, Richter JH, Conley AJ, Park S, Lauritzen PH, Gettelman A, Williamson DL, Rasch PJ, Vavrus SJ, Taylor MA, Collins WD, Zhang M, Lin SJ (2010) Description of the NCAR Community Atmosphere Model (CAM 4.0). In: NCAR Tech. Note TN-485, NCAR, p 212 Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knutti R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR (2013) Energy budget constraints on climate response. Nature Geoscience 6(6):415–416. https://doi.org/10.1038/ngeo1836, http://www.nature.com/articles/ngeo1836 Pendergrass AG, Conley A, Vitt F (2017) Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth System Science Data Discussions pp 1–14, https://doi.org/10.5194/essd-2017-108, https://www.earth-syst-sci-data-discuss.net/essd-2017-108/ Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16(2–3):123–146. https://doi.org/10.1007/s003820050009 Proistosescu C, Huybers PJ (2017) Slow climate mode reconciles historical and model-based estimates of climate sensitivity. Sci Adv 3(7). http://advances.sciencemag.org/content/3/7/e1602821 Qu X, Hall A, Klein SA, Caldwell PM (2015a) The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Clim Dyn 45(1–2):375–396. https://doi.org/10.1007/s00382-014-2441-9 Qu X, Hall A, Klein SA, DeAngelis AM (2015b) Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys Res Lett 42(18):7767–7775. https://doi.org/10.1002/2015GL065627 Resplandy L, Keeling RF, Eddebbar Y, Brooks MK, Wang R, Bopp L, Long MC, Dunne JP, Koeve W, Oschlies A (2018) Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature 563(7729):105–108. https://doi.org/10.1038/s41586-018-0651-8 Roe GH, Armour KC (2011) How sensitive is climate sensitivity? Geophysical Research Letters 38(14):n/a–n/a, https://doi.org/10.1029/2011GL047913 Rose BEJ, Rayborn L (2016) The effects of ocean heat uptake on transient climate sensitivity. Curr Clim Change Rep 2(4):190–201. https://doi.org/10.1007/s40641-016-0048-4 Rose BEJ, Armour KC, Battisti DS, Feldl N, Koll DDB (2014) The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys Res Lett 41(3):1071–1078. https://doi.org/10.1002/2013GL058955 Rugenstein MAA, Caldeira K, Knutti R (2016a) Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophys Res Lett 43(18):9877–9885. https://doi.org/10.1002/2016GL070907 Rugenstein MAA, Gregory JM, Schaller N, Sedláček J, Knutti R (2016b) Multi-annual ocean-atmosphere adjustments to radiative forcing. Journal of Climate pp JCLI–D–16–0312.1, https://doi.org/10.1175/JCLI-D-16-0312.1 Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res: Atmos 105(D6):7337–7356. https://doi.org/10.1029/1999JD901105 Senior CA, Mitchell JFB (2000) The time-dependence of climate sensitivity. Geophys Res Lett 27(17):2685–2688. https://doi.org/10.1029/2000GL011373 Sherwood SC, Bony S, Boucher O, Bretherton C, Forster PM, Gregory JM, Stevens B (2015) Adjustments in the forcing-feedback framework for understanding climate change. Bull Am Meteorol Soc 96(2):217–228. https://doi.org/10.1175/BAMS-D-13-00167.1 Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21(14):3504–3520. https://doi.org/10.1175/2007JCLI2110.1 Webb MJ, Lambert FH, Gregory JM (2013) Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim Dyn 40(3–4):677–707. https://doi.org/10.1007/s00382-012-1336-x Williams KD, Ingram WJ, Gregory JM (2008) Time variation of effective climate sensitivity in GCMs. J Clim 21(19):5076–5090. https://doi.org/10.1175/2008JCLI2371.1 Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23(9):2333–2344. https://doi.org/10.1175/2009JCLI3139.1 Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19(24):6425–6432. https://doi.org/10.1175/JCLI3988.1 Zhou C, Zelinka MD, Klein SA (2016) Impact of decadal cloud variations on the Earth’s energy budget. Nat Geosci 9(12):871–874. https://doi.org/10.1038/ngeo2828 Zhou C, Zelinka MD, Klein SA (2017) Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J Adv Model Earth Syst. https://doi.org/10.1002/2017MS001096